Stochastic circuit breaker network model for bipolar resistance switching memories


We present a stochastic model for resistance switching devices in which a square grid of resistor breakers plays the role of the insulator switching layer. The probability of breaker switching between two fixed resistance values, \(R_\mathrm{OFF}\) and \(R_\mathrm{ON}\), is determined by the corresponding voltage drop and thermal Joule heating. The breaker switching produces the overall device resistance change. Salient features of all the switching operations of bipolar resistance switching memories (RRAMs) are reproduced by the model and compared to a prototypical \(\hbox {HfO}_2\)-based RRAM device. In particular, the need of a forming process that leads a fresh highly insulating device to a low resistance state (LRS) is captured by the model. Moreover, the model is able to reproduce the RESET process, which partially restores the insulating state through a gradual resistance transition as a function of the applied voltage and the abrupt nature of the SET process that restores the LRS. Furthermore, the multilevel capacity of a typical RRAM device obtained by tuning RESET voltage and SET compliance current is reproduced. The manuscript analyses the peculiar ingredients of the model and their influence on the simulated current–voltage curves and, in addition, provides a detailed description of the mechanisms that connect the switching of the single breakers and that of the overall device.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    the fraction of breaker is evaluated with respect of the total amount of breakers in the grid, i.e., \((m-1)\cdot n\) vertical and \(m\cdot (n-1)\) horizontal breakers.


  1. 1.

    Jeong, D.S., Thomas, R., Katiyar, R.S., Scott, J.F., Kohlstedt, H., Petraru, A., Hwang, C.S.: Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75(7), 076502 (2012). doi:10.1088/0034-4885/75/7/076502

    Article  Google Scholar 

  2. 2.

    Wong, H.S.P., Lee, H.Y., Yu, S., Chen, Y.S., Wu, Y., Chen, P.S., Lee, B., Chen, F.T., Tsai, M.J.: Metal-Oxide RRAM. Proc. IEEE 100(6), 1951 (2012). doi:10.1109/JPROC.2012.2190369

    Article  Google Scholar 

  3. 3.

    Chen, H.Y., Brivio, S., Chang, C.C., Frascaroli, J., Hou, T.H., Hudec, B., Liu, M., Lv, H., Molas, G., Sohn, J., Spiga, S., Teja, V.M., Vianello, E., Wong, H.S.P.: Resistive random access memory (RRAM) technology: from material, device, selector, 3D integration to bottom-up fabrication. J. Electroceramics (2017). doi:10.1007/s10832-017-0095-9

    Google Scholar 

  4. 4.

    Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765 (2011). doi:10.1007/s00339-011-6264-9

    Article  MATH  Google Scholar 

  5. 5.

    Covi, E., Brivio, S., Frascaroli, J., Fanciulli, M., Spiga, S.: (Invited) Analog HfO2-RRAM switches for neural networks. ECS Trans. 75(32), 85 (2017). doi:10.1149/07532.0085ecst

    Article  Google Scholar 

  6. 6.

    Covi, E., Brivio, S., Serb, A., Prodromakis, T., Fanciulli, M., Spiga, S.: Analog memristive synapse in spiking networks implementing unsupervised learning. Front. Neurosci. 10, 482 (2016). doi:10.3389/fnins.2016.00482

    Article  Google Scholar 

  7. 7.

    Prezioso, M., Merrikh-Bayat, F., Hoskins, B.D., Adam, G., Likharev, K.K., Strukov, D.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nat. Lett. 521, 61 (2015). doi:10.1038/nature14441

    Article  Google Scholar 

  8. 8.

    Garbin, D., Vianello, E., Bichler, O., Rafhay, Q., Gamrat, C., Ghibaudo, G., DeSalvo, B., Perniola, L.: HfO\(_{\text{2 }}\)-based OxRAM devices as synapses for convolutional neural networks. IEEE Trans. Electron Devices 62(8), 2494 (2015). doi:10.1109/TED.2015.2440102

    Article  Google Scholar 

  9. 9.

    Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Steward, D.R., Williams, R.S.: Memristive switches enable stateful logic operations via material implication. Nature 464, 873 (2010). doi:10.1038/nature08940

    Article  Google Scholar 

  10. 10.

    Rosezin, R., Linn, E., Kügeler, C., Bruchhaus, R., Waser, R.: Crossbar logic using bipolar and complementary resistive switches. IEEE Electron Device Lett. 32(6), 710 (2011). doi:10.1109/LED.2011.2127439

    Article  Google Scholar 

  11. 11.

    Chen, P.Y., Yu, S.: Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design. IEEE Trans. Electron Devices 62(12), 4022 (2015). doi:10.1109/TED.2015.2492421

    MathSciNet  Article  Google Scholar 

  12. 12.

    Huang, P., Liu, X.Y., Chen, B., Li, H.T., Wang, Y.J., Deng, Y.X., Wei, K.L., Zeng, L., Gao, B., Du, G., Zhang, X., Kang, J.F.: A physics-based compact model of metal-oxide-based RRAM DC and AC operations. IEEE Trans. Electron Devices 60(12), 4090 (2013). doi:10.1109/TED.2013.2287755

    Article  Google Scholar 

  13. 13.

    Piccolboni, G, Molas, G., Portal, J.M., Coquand, R., Bocquet, M., Garbin, D., Vianello, E., Carabasse, C., Delaye, V., Pellissier, C., Magis, T., Cagli, C., Gely, M., Cueto, O., Deleruyelle, D., Ghibaudo, G., Salvo, B.D., Perniola, L.: Investigation of the potentialities of Vertical Resistive RAM (VRRAM) for neuromorphic applications. In: IEEE International Electron Devices Meeting (IEDM), pp. 17.2.1–17.2.4. (2015). doi:10.1109/IEDM.2015.7409717

  14. 14.

    Degraeve, R., Fantini, A., Raghavan, N., Goux, L., Clima, S., Govoreanu, B., Belmonte, A., Linten, D., Jurczak, M.: Causes and consequences of the stochastic aspect of filamentary RRAM. Microelectron. Eng. 147, 171 (2015). doi:10.1016/j.mee.2015.04.025

    Article  Google Scholar 

  15. 15.

    Balatti, S., Ambrogio, S., Carboni, R., Milo, V., Wang, Z., Calderoni, A., Ramaswamy, N., Ielmini, D.: Physical unbiased generation of random numbers with coupled resistive switching devices. IEEE Trans. Electron Devices 63(5), 2029 (2016). doi:10.1109/TED.2016.2537792

    Article  Google Scholar 

  16. 16.

    Bill, J., Legenstein, R.: A compound memristive synapse model for statistical learning through STDP in spiking neural networks. Front. Neurosci. 8, 412 (2014). doi:10.3389/fnins.2014.00412

    Google Scholar 

  17. 17.

    Gao, B., Liu, L., Kang, J.: Investigation of the synaptic device based on the resistive switching behavior in hafnium oxide. Prog. Nat. Sci. Mater. Int. 25(1), 47 (2015). doi:10.1016/j.pnsc.2015.01.005

    Article  Google Scholar 

  18. 18.

    Padovani, A., Larcher, L., Pirrotta, O., Vandelli, L., Bersuker, G.: Microscopic modeling of HfO\(_x\) RRAM operations: from forming to switching. IEEE Trans. Electron Devices 62(6), 1998 (2015). doi:10.1109/TED.2015.2418114

    Article  Google Scholar 

  19. 19.

    Abbaspour, E., Menzel, S., Jungemann, C.: The role of the interface reactions in the electroforming of redox-based resistive switching devices using KMC simulations. In: 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (2015), pp. 293–296. doi:10.1109/SISPAD.2015.7292317

  20. 20.

    Brivio, S., Frascaroli, J., Spiga, S.: Role of metal-oxide interfaces in the multiple resistance switching regimes of Pt/HfO\(_2\)/TiN devices. Appl. Phys. Lett. 107(2), 023504 (2015). doi:10.1063/1.4926340

    Article  Google Scholar 

  21. 21.

    Frascaroli, J., Brivio, S., Ferrarese Lupi, F., Seguini, G., Boarino, L., Perego, M., Spiga, S.: Resistive switching in high-density nanodevices fabricated by block copolymer self-assembly. ACS Nano 9(3), 2518 (2015). doi:10.1021/nn505131b

    Article  Google Scholar 

  22. 22.

    Bersuker, G., Gilmer, D., Veksler, D., Kirsch, P., Vandelli, L., Padovani, A., Larcher, L., McKenna, K., Schluger, A., Iglesias, V., Porti, M., Nafría, M.: Metal oxide resistive memory switching mechanism based on conductive filament properties. J. Appl. Phys. 110(12), 124518 (2011). doi:10.1063/1.3671565

    Article  Google Scholar 

  23. 23.

    Brivio, S., Tallarida, G., Cianci, E., Spiga, S.: Formation and disruption of conductive filaments in a HfO\(_2\)/TiN structure. Nanotechnology 25(38), 385705 (2014). doi:10.1088/0957-4484/25/38/385705

    Article  Google Scholar 

  24. 24.

    Ielmini, D.: Modeling the universal set/reset characteristics of bipolar RRAM by field- and temperature-driven filament growth. IEEE Trans. Electron Devices 58(12), 4309 (2011). doi:10.1109/TED.2011.2167513

    Article  Google Scholar 

  25. 25.

    Brivio, S., Tallarida, G., Perego, D., Franz, S., Deleruyelle, D., Muller, C., Spiga, S.: Low-power resistive switching in Au/NiO/Au nanowire arrays. Appl. Phys. Lett. 101, 223510 (2012). doi:10.1063/1.4769044

    Article  Google Scholar 

  26. 26.

    Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G., Prodromakis, T.: Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 384010 (2013). doi:10.1088/0957-4484/24/38/384010

    Article  Google Scholar 

  27. 27.

    Brivio, S., Covi, E., Serb, A., Prodromakis, T., Fanciulli, M.: S. SpigaExperimental study of gradual/abrupt dynamics of HfO2-based memristive devices. Appl. Phys. Lett. 109(13), 133504 (2016). doi:10.1063/1.4963675

    Article  Google Scholar 

  28. 28.

    Chae, S.C., Lee, J.S., Kim, S., Lee, S.B., Chang, S.H., Liu, C., Kahng, B., Shin, H., Kim, D.W., Jung, C.U., Seo, S., Lee, M.J., Noh, T.W.: Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20(6), 1154 (2008). doi:10.1002/adma.200702024

    Article  Google Scholar 

  29. 29.

    Chang, S.H., Lee, J.S., Chae, S.C., Lee, S.B., Liu, C., Kahng, B., Kim, D.W., Noh, T.W.: Occurrence of both unipolar memory and threshold resistance switching in a NiO film. Phys. Rev. Lett. 102, 026801 (2009). doi:10.1103/PhysRevLett.102.026801

    Article  Google Scholar 

  30. 30.

    Liu, C., Chae, S.C., Lee, J.S., Chang, S.H., Lee, S.B., Kim, D.W., Jung, C.U., Seo, S., Ahn, S.E., Kahng, B., Noh, T.W.: Abnormal resistance switching behaviours of NiO thin films: possible occurrence of both formation and rupturing of conducting channels. J. Phys. D Appl. Phys. 42(1), 015506 (2009). doi:10.1088/0022-3727/42/1/015506

    Article  Google Scholar 

  31. 31.

    Kim, K., Yoon, S.J., Choi, W.Y.: Dual random circuit breaker network model with equivalent thermal circuit network. Appl. Phys. Express 7(2), 024203 (2014). doi:10.7567/APEX.7.024203

    Article  Google Scholar 

  32. 32.

    Xing, J., Li, Q., Tian, X., Li, Z., Xu, H.: A memristor random circuit breaker model accounting for stimulus thermal accumulation. IEICE Electron. Express advpub (2016). doi:10.1587/elex.13.20160376

    Google Scholar 

  33. 33.

    Lee, S.B., Lee, J.S., Chang, S.H., Yoo, H.K., Kang, B.S., Kahng, B., Lee, M.J., Kim, C.J., Noh, T.W.: Interface-modified random circuit breaker network model applicable to both bipolar and unipolar resistance switching. Appl. Phys. Lett. 98(3), 033502 (2011). doi:10.1063/1.3543776

    Article  Google Scholar 

  34. 34.

    Li, C., Gao, B., Yao, Y., Guan, X., Shen, X., Wang, Y., Huang, P., Liu, L., Liu, X., Li, J., Gu, C., Kang, J., Yu, R.: Direct observations of nanofilament evolution in switching processes in HfO2-based resistive random access memory by in situ TEM studies. Adv. Mater. (2017). doi:10.1002/adma.201602976.1602976

    Google Scholar 

  35. 35.

    Yu, S., Guan, X., Wong, H.S.P.: On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling, monte carlo simulation, and experimental characterization. In: Electron Devices Meeting (IEDM), IEEE International, 2011, pp. 17.3.1–17.3.4 (2011). doi:10.1109/IEDM.2011.6131572

  36. 36.

    Yu, S., Chen, Y.Y., Guan, X., Wong, H.S.P., Kittl, J.A.: A Monte Carlo study of the low resistance state retention of HfOx based resistive switching memory. Appl. Phys. Lett. 100(4), 043507 (2012). doi:10.1063/1.3679610

    Article  Google Scholar 

  37. 37.

    Brivio, S., Covi, E., Serb, A., Prodromakis, T., Fanciulli, M., Spiga, S.: Gradual set dynamics in \(\text{HfO }_2\)-based memristor driven by sub-threshold voltage pulses. In Proceedings of IEEE International Conference on Memristive Systems (MEMRISYS), pp. 1–2 (2015). doi:10.1109/MEMRISYS.2015.7378383

  38. 38.

    Brivio, S., Frascaroli, J., Spiga, S.: Role of Al doping in the filament disruption in \(\text{ HfO }_2\) resistance switches. Nanotechnology (2017). doi:10.1088/1361-6528/aa8013

    Google Scholar 

  39. 39.

    Frascaroli, J., Volpe, F.G., Brivio, S., Spiga, S.: Effect of Al doping on the retention behavior of \(\text{ HfO }_2\) resistive switching memories. Microelectron. Eng. 147, 104 (2015). doi:10.1016/j.mee.2015.04.043

    Article  Google Scholar 

  40. 40.

    Spiga, S., Lamperti, A., Wiemer, C., Perego, M., Cianci, E., Tallarida, G., Lu, H., Alia, M., Volpe, F., Fanciulli, M.: Resistance switching in amorphous and crystalline binary oxides grown by electron beam evaporation and atomic layer deposition. Microelectron. Eng. 85(12), 2414 (2008). doi:10.1016/j.mee.2008.09.018

    Article  Google Scholar 

  41. 41.

    Spiga, S., Lamperti, A., Cianci, E., Volpe, F.G., Fanciulli, M.: Transition metal binary oxides for ReRAM applications. ECS Trans. 25(6), 411 (2009). doi:10.1149/1.3206640

    Article  Google Scholar 

  42. 42.

    Knudsen, H.A., Fazekas, S.: Robust algorithm for random resistor networks using hierarchical domain structure. J. Comput. Phys. 211(2), 700 (2006). doi:10.1016/

    MathSciNet  Article  MATH  Google Scholar 

  43. 43.

    Ferragut, R., Dupasquier, A., Brivio, S., Bertacco, R., Egger, W.: Study of defects in an electroresistive Au/La\(_{2/3}\)Sr\(_{1/3}\)MnO\(_3\)/SrTiO\(_3\)(001) heterostructure by positron annihilation. J. Appl. Phys. 110, 053511 (2011). doi:10.1063/1.3631825

    Article  Google Scholar 

  44. 44.

    Traoré, B., Baise, P., Vianello, E., Grampiex, H., Bonnevialle, A., Jalaguier, E., Molas, G., Jeannot, S., Perniola, L., De Salvo, B., Nishi, Y.: Microscopic understanding of the low resistance state retention in HfO\(_2\) and HfAlO based RRAM. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), p. 21.5.1 (2013). doi:10.1109/IEDM.2014.7047097

  45. 45.

    Zhao, L., Ryu, SW., Hazeghi, A., Duncan, D., Magyari-Köpe, B., Nishi, Y.: Dopant selection rules for extrinsic tunability of HfOx RRAM characteristics: a systematic study. In: 2013 Symposium on VLSI Technology (VLSIT), p. T106 (2013)

  46. 46.

    Zhang, H., Gao, B., Sun, B., Chen, G., Zeng, L., Liu, L., Liu, X., Lu, J., Han, R., Kang, J., Yu, B.: Ionic doping effect in ZrO\(_2\) resistive switching memory. Appl. Phys. Lett. 96(12), 123502 (2010). doi:10.1063/1.3364130

    Article  Google Scholar 

  47. 47.

    Wu, Y., Yu, S., Wong, H.S., Chen, Y.S., Lee , H.Y., Wang, S.M., . Gu, P.Y., Chen, F., Tsai, M.J.: Circuit implementation of spike time dependent plasticity (STDP) for artificial synapse. In: Proceedings of IEEE International Memory Workshop (IMW), pp. 1–4 (2012). doi:10.1109/IMW.2012.6213663

  48. 48.

    Park, J., Woo, J., Prakash, A., Lee, S., Lim, S., Hwang, H.: Improved reset breakdown strength in a HfOx-based resistive memory by introducing RuOx oxygen diffusion barrier. AIP Adv. 26(5), 055114 (2016). doi:10.1063/1.4950966

    Article  Google Scholar 

  49. 49.

    Russo, U., Ielmini, D., Cagli, C., Lacaita, A.: Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56(2), 193 (2009). doi:10.1109/TED.2008.2010584

    Article  Google Scholar 

  50. 50.

    Celano, U., Goux, L., Belmonte, A., Giammaria, G., Opsomer, K., Detavernier, C., Richard, O., Bender, H., Irrera, F., Jurczak, M., Vandervorst, W.: Progressive versus abrupt reset behavior in conductive bridging devices: A C-AFM tomography study. In: IEEE International Electron Devices Meeting, pp. 14.1.1–14.1.4 (2014). doi:10.1109/IEDM.2014.7047048

  51. 51.

    Jana, D., Roy, S., Panja, R., Dutta, M., Rahaman, S.Z., Mahapatra, R., Maikap, S.: Conductive-bridging random access memory: challenges and opportunity for 3D architecture. Nanoscale Res. Lett. 10, 1 (2015). doi:10.1186/s11671-015-0880-9

    Article  Google Scholar 

  52. 52.

    Traoré, B., Blaise, P., Vianello, E., Perniola, L., Salvo, B.D., Nishi, Y.: HfO2-Based RRAM: Electrode Effects, Ti/HfO2 Interface, Charge Injection, and Oxygen (O) Defects Diffusion Through Experiment and Ab Initio Calculations. IEEE Trans. Electron Devices 63(1), 360 (2016). doi:10.1109/TED.2015.2503145

    Article  Google Scholar 

  53. 53.

    Ambrogio, S., Balatti, S., Gilmes, D., Ielmini, D.: Analytical modeling of oxide-based bipolar resistive memories and complementary resistive switches. IEEE Trans. Electron Devices 61(7), 2378 (2014). doi:10.1109/TED.2014.2325531

    Article  Google Scholar 

  54. 54.

    Marchewka, A., Roesgen, B., Skaja, K., Du, H., Jia, C.L., Mayer, J., Rana, V., Waser, R., Menzel, S.: Nanoionic resistive switching memories: on the physical nature of the dynamic reset process. Adv. Electron. Mater. 2(1), 1500233 (2016). doi:10.1002/aelm.201500233.1500233

  55. 55.

    Kim, S., Du, C., Sheridan, P., Ma, W., Choi, S., Lu, W.D.: Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15(3), 2203 (2015). doi:10.1021/acs.nanolett.5b00697

    Article  Google Scholar 

  56. 56.

    Vandelli, L., Padovani, A., Larcher, L., Broglia, G., Ori, G., Montorsi, M., Bersuker, G., Pavan, P.: Comprehensive physical modeling of forming and switching operations in HfO\(_{\text{2 }}\) RRAM devices. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), pp. 17.5.1–17.5.4 (2011). doi:10.1109/IEDM.2011.6131574

  57. 57.

    Menzel, S., Böttger, U., Wimmer, M., Salinga, M.: Physics of the switching kinetics in resistive memories. Adv. Funct. Mater. 25(40), 6306 (2015). doi:10.1002/adfm.201500825

    Article  Google Scholar 

Download references


The work is partially supported by the European Project H2020-ICT-2015 NEUral computing aRchitectures in Advanced Monolithic 3D-VLSI nano-technologies (\(\hbox {NEURAM}^3\), Grant Agreement No. 687299).

Author information



Corresponding author

Correspondence to S. Brivio.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brivio, S., Spiga, S. Stochastic circuit breaker network model for bipolar resistance switching memories. J Comput Electron 16, 1154–1166 (2017).

Download citation


  • RRAM
  • ReRAM
  • Memristor
  • Stochastic model
  • Random circuit breaker