Skip to main content
Log in

Kinetic and thermodynamic heterogeneity: an intrinsic source of variability in Cu-based RRAM memories

  • S.I.: Computational Electronics of Emerging Memory Elements
  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The resistive random-access memory (RRAM) device concept is close to enabling the development of a new generation of non-volatile memories, provided that their reliability issues are properly understood. The design of a RRAM operating with extrinsic defects based on metallic inclusions, also called conductive bridge RAM, allows the use of a large spectrum of solid electrolytes. However, when scaled to device dimensions that meet the requirements of the latest technological nodes, the discrete nature of the atomic structure of the materials impacts the device operation. Using density functional theory simulations, we evaluated the migration kinetics of Cu conducting species in amorphous \(\hbox {AlO}_{\mathrm{x}}\) and \(\hbox {WO}_{\mathrm{x}}\) solid electrolyte materials, and established that atomic disorder leads to a large variability in terms of defect stability and kinetic barriers. This variability has a significant impact on the filament resistance and its dynamics, as evidenced during the formation step of the resistive filament. Also, the atomic configuration of the formed filament can age/relax to another metastable atomic configuration, and lead to a modulation of the resistivity of the filament. All these observations are qualitatively explained on the basis of the computed statistical distributions of the defect stability and on the kinetic barriers encountered in RRAM materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fantini, A., Goux, L., Degraeve, R., Wouters, D.J., Raghavan, N., Kar, G., Belmonte, A., Chen, Y.Y., Govoreanu, B., Jurczak, M.: Intrinsic switching variability in HfO\(_2\) RRAM. In: IEEE 2013 5th IEEE International Memory Workshop (Imw), pp. 30–33 (2013)

  2. Frascaroli, J., Volpe, F.G., Brivio, S., Spiga, S.: Effect of Al doping on the retention behavior of HfO 2 resistive switching memories. Microelectron. Eng. 147, 104–107 (2015)

    Article  Google Scholar 

  3. Ambrogio, S., Balatti, S., McCaffrey, V., Wang, D.C., Ielmini, D.: Noise-induced resistance broadening in resistive switching memory—Part I: Intrinsic cell behavior. IEEE Trans. Electron Devices 62(11), 3805–3811 (2015)

    Article  Google Scholar 

  4. Valov, I., Kozicki, M.N.: Cation-based resistance change memory. J. Phys. D Appl. Phys. 46(7), 074005 (2013)

    Article  Google Scholar 

  5. Yang, Y.C., Gao, P., Li, L.Z., Pan, X.Q., Tappertzhofen, S., Choi, S., Waser, R., Valov, I., Lu, W.D.: Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun. 5, 4232 (2014)

    Google Scholar 

  6. Degraeve, R., Fantini, A., Raghavan, N., Goux, L., Clima, S., Govoreanu, B., Belmonte, A., Linten, D., Jurczak, M.: Causes and consequences of the stochastic aspect of filamentary RRAM. Microelectron. Eng. 147, 171–175 (2015)

    Article  Google Scholar 

  7. Guzman, D.M., Onofrio, N., Strachan, A.: Stability and migration of small copper clusters in amorphous dielectrics. J. Appl. Phys. 117(19), 195702 (2015)

    Article  Google Scholar 

  8. Clima, S., Chen, Y.Y., Fantini, A., Goux, L., Degraeve, R., Govoreanu, B., Pourtois, G., Jurczak, M.: Intrinsic tailing of resistive states distributions in amorphous HfO x and TaO x based resistive random access memories. IEEE Electron Device Lett. 36(8), 769–771 (2015)

    Article  Google Scholar 

  9. Redolfi, A., Goux, L., Jossart, N., Yamashita, F., Nishimura, E., Urayama, D., Fujimoto, K., Witters, T., Lazzarino, F., Jurczak, M.: A novel CBRAM integration using subtractive dry-etching process of Cu enabling high-performance memory scaling down to 10nm node. In: IEEEE 2015 Symposium on Vlsi Technology (Vlsi Technology) (2015)

  10. Van de Walle, C.G., Janotti, A.: Advances in electronic structure methods for defects and impurities in solids. Physica Status Solidi B Basic Solid State Phys. 248(1), 19–27 (2011)

    Article  Google Scholar 

  11. Henkelman, G., Uberuaga, B.P., Jonsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)

    Article  Google Scholar 

  12. Perdew, J.P., Emzerhof, M., Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982–9985 (1996)

    Article  Google Scholar 

  13. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009)

    Article  Google Scholar 

  14. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892–7895 (1990)

    Article  Google Scholar 

  15. Fantini, A., Gorine, G., Degraeve, R., Goux, L., Chen, C.Y., Redolfi, A., Clima, S., Cabrini, A., Torelli, G., Jurczak, M.: Intrinsic program instability in HfO\(_2\) RRAM and consequences on program algorithms. In: IEEE International Electron Devices Meeting (IEDM) (2015)

  16. Raghavan, N., Degraeve, R., Fantini, A., Goux, L., Wouters, D.J., Groeseneken, G., Jurczak, M.: Modeling the impact of reset depth on vacancy-induced filament perturbations in \({\rm HfO} _ {2} \) RRAM. IEEE Electron Device Lett. 34(5), 614–616 (2013)

    Article  Google Scholar 

  17. Tsuruoka, T., Terabe, K., Hasegawa, T., Valov, I., Waser, R., Aono, M.: Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Adv. Funct. Mater. 22(1), 70–77 (2012)

  18. Woo, J., Belmonte, A., Redolfi, A., Hwang, H., Jurczak, M., Goux, L.: Introduction of WO 3 layer in a Cu-based Al 2 O 3 conductive bridge RAM system for robust cycling and large memory window. IEEE J. Electron Devices Soc. 4(3), 163–166 (2016)

    Article  Google Scholar 

  19. Clima, S., Chen, Y.Y., Chen, C.Y., Goux, L., Govoreanu, B., Degraeve, R., Fantini, A., Jurczak, M., Pourtois, G.: First-principles thermodynamics and defect kinetics guidelines for engineering a tailored RRAM device. J, Appl. Phys. 119(22), 225107 (2016)

    Article  Google Scholar 

  20. Bischoff, C., Schuller, K., Beckman, S.P., Martin, S.W.: Non-Arrhenius ionic conductivities in glasses due to a distribution of activation energies. Phys. Rev. Lett. 109(7), 075901 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out in the framework of the imec Core CMOS—Emerging Memory Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiu Clima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clima, S., Belmonte, A., Degraeve, R. et al. Kinetic and thermodynamic heterogeneity: an intrinsic source of variability in Cu-based RRAM memories. J Comput Electron 16, 1011–1016 (2017). https://doi.org/10.1007/s10825-017-1042-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1042-3

Keywords

Navigation