Advertisement

Journal of Computational Electronics

, Volume 16, Issue 1, pp 61–73 | Cite as

Quantum analysis based extraction of frequency dependent intrinsic and extrinsic parameters for GEWE-SiNW MOSFET

  • Neha Gupta
  • Rishu Chaujar
Article
  • 155 Downloads

Abstract

This paper examines the bias-independent and bias-dependent extrinsic and intrinsic parameters of the gate electrode workfunction engineered (GEWE) silicon nanowire (SiNW) metal–oxide–semiconductor field-effect transistor (MOSFET) by considering quantum effects. The results reveal that the effect of extrinsic parameters such as the resistance, capacitance, and inductance of the electrodes is less pronounced in the GEWE-SiNW compared with the conventional SiNW or conventional MOSFET. The intrinsic transconductance of the GEWE-SiNW device can be further improved by tuning the gate metal workfunction difference, which results in shorter time constant and lower parasitic capacitance, making it suitable for radiofrequency integrated circuit (RFIC) design. It is also observed that, in the saturation region, the device exhibits improved transconductance and noticeable reduction in \(C_{\mathrm{sdx}}\) [due to drain-induced barrier lowering (DIBL)] but the parasitic capacitance and time constant also reduce. In addition, a non-quasi-static small-signal model has been studied in terms of Z and Y parameters; the results show good agreement with the results of three-dimensional (3D) simulations at thousands of GHz.

Keywords

Extrinsic and intrinsic parameters Gate electrode workfunction engineering (GEWE) Quantum models Silicon nanowire (SiNW) Z and Y parameters Modeling 

Notes

Acknowledgements

The authors would like to thank the Microelectronics Research Lab, Department of Engineering Physics, Delhi Technological University (formerly DCE). N.G. is grateful to the University Grant Commission (UGC) for providing the financial assistance necessary to carry out this research work.

References

  1. 1.
    Deen, M.J., Fjeldly, T.A.: CMOS RF Modeling. Characterization and Applications. World Scientific, Singapore (2002)Google Scholar
  2. 2.
    Wood, J., Lamey, D., Guyonnet, M., Chan, D., Bridges, D., Monsauret, N., Aaen, P.H.: An extrinsic component parameter extraction method for high power RF LDMOS transistors. In: IEEE MTT-S International Microwave Symposium Digest, pp. 607–610 (2008)Google Scholar
  3. 3.
    Ytterdal, T., Cheng, Y., Fjeldly, T.A.: Device Modeling for Analog and RF CMOS Circuit Design. Wiley, New York (2000)Google Scholar
  4. 4.
    Cheng, Y., Deen, M.J., Chen, C.-H.: MOSFET modeling for RF IC design. IEEE Trans. Electron Devices 52(7), 1286–1303 (2005)CrossRefGoogle Scholar
  5. 5.
    Woerlee, P.H., et al.: RF-CMOS performance trends. IEEE Trans. Electron Devices 48(8), 1776–1782 (2001)CrossRefGoogle Scholar
  6. 6.
    Alam, M.S., Armstrong, G.A.: Extraction of extrinsic series resistance in RF CMOS. In: NSTI-Nanotech, pp. 136–139 (2004)Google Scholar
  7. 7.
    Buss, D.: Device issue in the integration of analog/RF functions in deep sub-micron digital CMOS. In: IEDM Technology Digest, pp. 423–426 (1999)Google Scholar
  8. 8.
    Kumar, A., Gupta, N., Chaujar, R.: Power gain assessment of ITO based transparent gate recessed channel (TGRC) MOSFET for RF/wireless applications. Superlattices Microstruct. 91, 290–301 (2016)CrossRefGoogle Scholar
  9. 9.
    Kumar, A., Gupta, N., Chaujar, R.: TCAD RF performance investigation of transparent gate recessed channel MOSFET. Microelectron. J. 49, 36–42 (2016)CrossRefGoogle Scholar
  10. 10.
    Subramanian, V., Abdelkarim, M., Bertrand, P., Morin, D., Guido, G., Willy, S., Stefaan, D.: Identifying the bottlenecks to the RF performance of FinFETs. In: IEEE 23rd International Conference on VLSI Design, pp. 111–116 (2010)Google Scholar
  11. 11.
    Cui, Y., Zhong, Z., Wang, D., Wang, W.U., Lieber, C.M.: High performance silicon nanowire field effect transistors. Nano Lett. 3(2), 149–152 (2003)CrossRefGoogle Scholar
  12. 12.
    Chen, X., Tan, C.M.: Modeling and analysis of gate-all-around silicon nanowire FET. Microelectron. Reliab. 54(6–7), 1103–1108 (2014)CrossRefGoogle Scholar
  13. 13.
    Iwai, H., et al.: Si nanowire FET and its modeling. Sci. China Inf. Sci. 54(5), 1004–1011 (2011)CrossRefGoogle Scholar
  14. 14.
    Wang, R., Zhuge, J., Huang, R., Tian, Y., Xiao, H., Zhang, L., Li, C., Zhang, X., Wang, Y.: Analog/RF performance of Si nanowire MOSFETs and the impact of process variation. IEEE Trans. Electron Devices 54(6), 1288–1294 (2007)CrossRefGoogle Scholar
  15. 15.
    Cho, S., Kang, I.M., Kim, K.R.: Investigation of source-to-drain capacitance by DIBL effect of silicon nanowire MOSFETs. IEICE Electron. Express 7(19), 1499–1503 (2010)CrossRefGoogle Scholar
  16. 16.
    Cho, S., Kim, K.R., Park, B.G., Kang, I.M.: RF Performance and small-signal parameter extraction of junctionless silicon nanowire MOSFETs. IEEE Trans. Electron Devices 58(5), 1388–1396 (2011)CrossRefGoogle Scholar
  17. 17.
    Long, W., Ou, H., Kuo, J.M., Chin, K.K.: Dual material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46(5), 865–870 (1999)CrossRefGoogle Scholar
  18. 18.
    Gupta, N., Chaujar, R.: Implications of transport models on the analog performance of gate electrode workfunction engineered (GEWE) SiNW MOSFET. In: IEEE 2nd International Conference on Devices, Circuits and Systems, pp. 1–5 (2014)Google Scholar
  19. 19.
    Gupta, N., Kumar, A., Chaujar, R.: Oxide bound impact on hot-carrier degradation for gate electrode workfunction engineered (GEWE) silicon nanowire MOSFET. Microsyst. Technol. 22(11), 2655–2664 (2015)CrossRefGoogle Scholar
  20. 20.
    Gupta, N., Kumar, A., Chaujar, R.: Impact of device parameter variation on RF performance of gate electrode workfunction engineered (GEWE)-silicon nanowire (SiNW) MOSFET. J. Comput. Electron. 14(3), 798–810 (2015)CrossRefGoogle Scholar
  21. 21.
    Gupta, N., Kumar, A., Chaujar, R.: TCAD analysis of frequency dependent intrinsic and extrinsic parameters of GEWE-SiNW MOSFET. In: Nanoelectronics, Materials & Devices, pp. 185–188 (2015)Google Scholar
  22. 22.
    Hu, C.: Modern Semiconductor Device for Integrated Circuit, pp. 261–274. Prentice Hall, Englewood Cliffs (2009)Google Scholar
  23. 23.
    ATLAS User’s Manual: SILVACO Int. Santa Clara, CA (2014)Google Scholar
  24. 24.
    Gupta, N., Chaujar, R.: Influence of gate metal engineering on small-signal and noise behaviour of silicon nanowire MOSFET for low-noise amplifiers. Appl. Phys. A 122(8), 1–9 (2016)Google Scholar
  25. 25.
    Iannaccone, G., Curatola, G., Fiori, G.: Effective Bohm Quantum potential for device simulators based on drift-diffusion and energy transport. In: Simulation of semiconductor processes and devices (SISPAD), pp. 275–278 (2004)Google Scholar
  26. 26.
    Suk, S.D., et al.: High performance 5 nm radius twin silicon nanowire MOSFET (TSNWFET): fabrication on bulk Si wafer, characteristics, and reliability. In: IEEE IEDM Technology Digest, pp. 717–720 (2005)Google Scholar
  27. 27.
    Yang, B., Buddharaju, K.D., Teo, S.H.G., Singh, N., Lo, G.Q., Kwong, D.L.: Vertical silicon-nanowire formation and gate-all-around MOSFET. IEEE Electron Device Lett. 29(7), 791–794 (2008)CrossRefGoogle Scholar
  28. 28.
    Rustagi, S.C., et al.: CMOS Inverter based on gate-all-around silicon-nanowire MOSFETs fabricated using top-down approach. IEEE Electron Device Lett. 28(11), 1021–1024 (2007)CrossRefGoogle Scholar
  29. 29.
    Polishchuk, I., Ranade, P., King, T.J., Hu, C.: Dual work function metal gate CMOS technology using metal interdiffusion. IEEE Electron Device Lett. 22(9), 444–446 (2001)CrossRefGoogle Scholar
  30. 30.
    Liu, J., Wen, H.C., Lu, J.P., Kwong, D.L.: Dual-work-function metal gates by full silicidation of Poly-Si with Co-Ni bi-layers. IEEE Electron Device Lett. 26(4), 228–230 (2005)CrossRefGoogle Scholar
  31. 31.
    Na, K.Y., Kim, Y.S.: Silicon complementary metal-oxide semiconductor field-effect transistors with dual work function gate. Jpn. J. Appl. Phys. 45(12), 9033–9036 (2006)CrossRefGoogle Scholar
  32. 32.
    Shirak, O., Shtempluck, O., Kotchtakov, V., Bahir, G., Yaish, Y.E.: High performance horizontal gate-all-around silicon nanowire field-effect transistors. Nanotechnology 23, 395202 (2012)CrossRefGoogle Scholar
  33. 33.
    Moon, D., Choi, S.-J., Duarte, J.P., Choi, Y.-K.: Investigation of silicon nanowire gate-all-around junctionless transistors built on a bulk substrate. IEEE Trans. Electron Devices 60, 1355–1360 (2013)CrossRefGoogle Scholar
  34. 34.
    Lee, J.-H., Kim, B.-S., Choi, S.-H., Jang, Y., Hwangc, S.W., Whang, D.: A facile route to Si nanowire gate-all-around field effect transistors with a steep subthreshold slope. Nanoscale 5, 8968–8972 (2013)CrossRefGoogle Scholar
  35. 35.
    Iwai, H.: Roadmap for 22 nm and beyond. Microelectron. Eng. 86(7), 1520–1528 (2009)CrossRefGoogle Scholar
  36. 36.
    Raghavan, A., Srirattana, N., Laskar, J.: Modelling and Design Techniques for RF Power Amplifiers. Wiley, New York (2007)CrossRefGoogle Scholar
  37. 37.
    Lovelace, D., Costa, J., Camilleri, N.: Extracting small- signal model parameters of silicon MOSFET transistors. In: Proceedings IEEE MTT-S, pp. 865–868 (1994)Google Scholar
  38. 38.
    Tsividis, Y.: Operation and Modeling of the MOS Transistor, 2nd edn. Oxford Universiy Press, New York (2010)Google Scholar
  39. 39.
    Malik, P., Gupta, R.S., Chaujar, R., Gupta, M.: AC analysis of nanoscale GME-TRC MOSFET for microwave and RF applications. Microelectron. Reliab. 52(1), 151–158 (2012)CrossRefGoogle Scholar
  40. 40.
    Razavi, B., Yan, R.H., Lee, K.F.: Impact of distributed gate resistance on the performance of MOS devices. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 41(11), 750–754 (1994)Google Scholar
  41. 41.
    Je, M., Shin, H.: Accurate four-terminal RF MOSFET model accounting for the short-channel effect in the source to drain capacitance. In: Simulation of Semiconductor Processes and Devices (SISPAD), pp. 247–250 (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Microelectronics Research Lab, Department of Engineering PhysicsDelhi Technological UniversityDelhiIndia

Personalised recommendations