Advertisement

Journal of Computational Electronics

, Volume 15, Issue 4, pp 1361–1369 | Cite as

Negative differential resistance in new structures based on graphene nanoribbons

  • M. Sharifi
  • E. Akhoundi
  • H. Esmaili
Article

Abstract

Six new structures based on graphene nanoribbons are proposed, all of which show negative differential resistance (NDR) in their IV characteristics. Electron transfer in these structures is based on intraband tunneling, interband resonant tunneling, or simple interband tunneling. The IV characteristics of the structures are investigated using a \(\mathrm {\pi }\)-orbital tight-binding approach and the nonequilibrium Green’s function formalism. Atomically precise doping with boron and/or nitrogen impurities as well as careful selection of nanoribbon width have been used to achieve desired energy-band structures. The introduced structures are found to offer good flexibility to fulfill circuit requirements in terms of peak/valley voltages and currents as well as high speed. In these new structures, the peak current ranges from 5.5 to 1300 nA, the peak voltage from 24 to 115 mV, the peak–valley ratio at room temperature from 34 to 8582, and the NDR width from 40 to 180 mV. Effects of different temperatures are also explored, and the results reported.

Keywords

Boron Doping Graphene nanoribbon Interband tunneling Negative differential resistance Nitrogen pn junction Resonant tunneling diode 

References

  1. 1.
    Chang, L.L., Esaki, L., Tsu, R.: Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett. 24, 593–595 (1974)CrossRefGoogle Scholar
  2. 2.
    Mazumder, P., Kulkarni, S., Bhattacharya, M., Sun, J.P., Haddad, G.I.: Digital circuit applications of resonant tunneling devices. Proc. IEEE 86, 664–686 (1998)CrossRefGoogle Scholar
  3. 3.
    Mathews, R.H., Sage, J.P., Sollner, T.C.L.G., Calawa, S.D., Chen, C.L., Mahoney, L.J., Maki, P.A., Molvar, K.M.: A new RTD-FET logic family. Proc. IEEE 87, 596–605 (1999)CrossRefGoogle Scholar
  4. 4.
    Pacha, C., Auer, U., Burwick, C., Glosekotter, P., Brennemann, A., Prost, W., Tegude, F.J., Goser, K.F.: Threshold logic circuit design of parallel adders using resonant tunneling devices. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 8, 558–572 (2000)CrossRefGoogle Scholar
  5. 5.
    Asada, M., Suzuki, S., Kishimoto, N.: Resonant tunneling diodes for sub-terahertz and terahertz oscillators. Jpn. J. Appl. Phys. 47, 4375–4384 (2008)CrossRefGoogle Scholar
  6. 6.
    Feiginov, M., Sydlo, C., Cojocari, O., Meissner, P.: Resonant-tunnelling-diode oscillators operating at frequencies above 1.1THz. Appl. Phys. Lett. 99, 233506 (2011)CrossRefGoogle Scholar
  7. 7.
    Seabaugh, A.C., Kao, Y.C., Yuan, H.T.: Nine-state resonant tunneling diode memory. IEEE Electron Device Lett. 13, 479–481 (1992)CrossRefGoogle Scholar
  8. 8.
    van der Wagt, J.P.A., Seabaugh, A.C., Beam III, E.A.: RTD/HFET low standby power SRAM gain cell. IEEE Electron Device Lett. 19, 425–428 (1998)Google Scholar
  9. 9.
    Sweeny, M., Xu, J.: Resonant interband tunnel diodes. Appl. Phys. Lett. 54, 546–548 (1989)CrossRefGoogle Scholar
  10. 10.
    Tsai, H.H., Su, Y.K., Lin, H.H., Wang, R.L., Lee, T.L.: P-N double quantum well resonant interband tunneling diode with peak-to-valley current ratio of 144 at room temperature. IEEE Electron Device Lett. 15, 357–359 (1994)CrossRefGoogle Scholar
  11. 11.
    Söderström, J.R., Chow, D.H., McGill, T.C.: New negative differential resistance device based on resonant interband tunneling. Appl. Phys. Lett. 55, 1094–1096 (1989)CrossRefGoogle Scholar
  12. 12.
    Williamson III, W., Enquist, S., Chow, D.H., Dunlap, H.L., Subramaniam, S., Lei, P., Bernstein, G.H., Gilbert, B.K.: 12 GHz clocked operation of ultralow power interband resonant tunneling diode pipelined logic gates. IEEE Journal of Solid State Circuits 32, 222–231 (1997)CrossRefGoogle Scholar
  13. 13.
    Chow, D.H., Dunlap, H.L., Williamson III, W., Enquist, S., Gilbert, B.K., Subramaniam, S., Lei, P., Bernstein, G.H.: InAs/AISb/GaSb resonant interband tunneling diodes and Au-on-InAs/A1Sb-superlattice Schottky diodes for logic circuits. IEEE Electron Device Lett. 17, 69–71 (1996)CrossRefGoogle Scholar
  14. 14.
    Jin, N., Chung, S.Y., Heyns, R.M., Berger, P.R., Yu, R., Thompson, P.E., Rommel, S.L.: Tri-state logic using vertically integrated Si-SiGe resonant interband tunneling diodes with double NDR. IEEE Electron Device Lett. 25, 646–648 (2004)CrossRefGoogle Scholar
  15. 15.
    Jin, N., Chung, S.Y., Yu, R., Heyns, R.M., Berger, P.R., Thompson, P.E.: The effect of spacer thicknesses on Si-based resonant interband tunneling diode performance and their application to low-power tunneling diode SRAM circuits. IEEE Trans. Electron Devices 53, 2243–2249 (2006)CrossRefGoogle Scholar
  16. 16.
    Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)CrossRefGoogle Scholar
  17. 17.
    Viet Hung, N., Mazzamuto, F., Bournel, A., Dollfus, P.: Resonant tunneling diode based on graphene/h-BN Heterostructure. J. of Phys. D: App. Phys 45, 325104 (2012)Google Scholar
  18. 18.
    Mishchenko, A., Tu, J.S., Cao, Y., Gorbachev, R.V., Wallbank, J.R., Greenaway, M.T., Morozov, V.E., Morozov, S.V., Zhu, M.J., Wong, S.L., Withers, F., Woods, C.R., Kim, Y.-J., Watanabe, K., Taniguchi, T., Vdovin, E.E., Makarovsky, O., Fromhold, T.M., Fal’ko, V.I., Geim, A.K., Eaves, L., Novoselov, K.S.: Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nature Nanotechnology 9, 808–813 (2014)CrossRefGoogle Scholar
  19. 19.
    Al-Dirini, F., Hossain, F.M., Nirmalathas, A., Skafidas, E.: All-graphene planar double barrier resonant tunneling diodes. IEEE J. Electron Devices Soc. 2, 118–122 (2014)CrossRefGoogle Scholar
  20. 20.
    Teong, H., Lam, K.T., Khalid, S.B., Liang, G.: Shape effects in graphene nanoribbon resonant tunneling diodes: A computational study. J. Appl. Phys. 105, 084317 (2009)CrossRefGoogle Scholar
  21. 21.
    Nguyen, V.H., Bournel, A., Dollfus, P.: Resonant tunneling structures based on epitaxial graphene on SiC. Semicond. Sci. Tech. 26, 125012 (2011)CrossRefGoogle Scholar
  22. 22.
    Song, Y., Wu, H.C., Guo, Y.: Negative differential resistances in graphene double barrier resonant tunneling diodes. Appl. Phys. Lett. 102, 093118 (2013)CrossRefGoogle Scholar
  23. 23.
    Fallahazad, B., Lee, K., Kang, S., Xue, J., Larentis, S., Corbet, C., Kim, K., Movva, H.C.P., Taniguchi, T., Watanabe, K., Register, L.F., Banerjee, S.K., Tutuc, E.: Gate-tunable resonant tunneling in double bilayer grapheme heterostructures. Nano Lett. 15, 428–433 (2014)CrossRefGoogle Scholar
  24. 24.
    Sun, J.P., Haddad, G., Mazumder, P., Schulman, J.N.: Resonant tunneling diodes: models and properties. Proc. IEEE 86, 641–660 (1998)CrossRefGoogle Scholar
  25. 25.
    Cloke, R.R., Marangoni, T., Nguyen, G.D., Joshi, T., Rizzo, D.J., Bronner, C., Cao, T., Louie, S.G., Crommie, M.F., Fischer, F.R.: Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons. J. Am. Chem. Soc. 137(28), 8872–8875 (2015)CrossRefGoogle Scholar
  26. 26.
    Kawai, S., Saito, S., Osumi, S., Yamaguchi, S., Foster, A.S., Spijker, P., Meyer, E.: Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 6, (2015)Google Scholar
  27. 27.
    Bronner, C., Stremlau, S., Gille, M., Brauße, F., Haase, A., Hecht, S., Tegeder, P.: Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem. Int. Ed. 52(16), 4422–4425 (2013)CrossRefGoogle Scholar
  28. 28.
    Cai, J., Pignedoli, C.A., Talirz, L., Ruffieux, P., Söde, H., Liang, L., Meunier, V., Berger, R., Li, R., Feng, X., Müllen, K.: Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 9(11), 896–900 (2014)CrossRefGoogle Scholar
  29. 29.
    Wang, X., Li, X., Zhang, L., Yoon, Y., Weber, P.K., Wang, H., Guo, J., Dai, H.: N-doping of graphene through electrothermal reactions with ammonia. Science 324(5928), 768–771 (2009)CrossRefGoogle Scholar
  30. 30.
    Ortiz-Medina, J., García-Betancourt, M.L., Jia, X., Martínez-Gordillo, R., Pelagio-Flores, M.A., Swanson, D., Elías, A.L., Gutiérrez, H.R., Gracia-Espino, E., Meunier, V., Owens, J.: Nitrogen-doped graphitic nanoribbons: synthesis, characterization, and transport. Adv. Funct. Mater. 23(30), 3755–3762 (2013)CrossRefGoogle Scholar
  31. 31.
    Yazdi Zehtab, A., Chizari, K., Jalilov, A.S., Tour, J., Sundararaj, U.: Helical and dendritic unzipping of carbon nanotubes: a route to nitrogen-doped graphene nanoribbons. ACS nano 9(6), 5833–5845 (2015)CrossRefGoogle Scholar
  32. 32.
    Morelos-Gómez, A., Vega-Díaz, S.M., González, V.J., Tristán-López, F., Cruz-Silva, R., Fujisawa, K., Muramatsu, H., Hayashi, T., Mi, X., Shi, Y., Sakamoto, H.: Clean nanotube unzipping by abrupt thermal expansion of molecular nitrogen: graphene nanoribbons with atomically smooth edges. Acs Nano 6(3), 2261–2272 (2012)CrossRefGoogle Scholar
  33. 33.
    Cruz-Silva, R., Morelos-Gómez, A., Vega-Díaz, S., Tristán-López, F., Elias, A.L., Perea-López, N., Muramatsu, H., Hayashi, T., Fujisawa, K., Kim, Y.A., Endo, M.: Formation of nitrogen-doped graphene nanoribbons via chemical unzipping. ACS nano 7(3), 2192–2204 (2013) M. and Endo, Formation of nitrogen-doped graphene nanoribbons via chemical unzipping. ACS nano 7(3), 2192–2204 (2013)CrossRefGoogle Scholar
  34. 34.
    Ren, H., Li, Q.X., Luo, Y., Yang, J.: Graphene nanoribbon as a negative differential resistance device. Appl. Phys. Lett. 94(17), 173110 (2009)CrossRefGoogle Scholar
  35. 35.
    Zhang, D.H., Yao, K.L., Gao, G.Y.: The peculiar transport properties in pn junctions of doped graphene nanoribbons. J. Appl. Phys. 11(1), 013718 (2011)CrossRefGoogle Scholar
  36. 36.
    Pramanik, A., Sarkar, S., Sarkar, P.: Doped GNR p-n junction as high performance NDR and rectifying device. J. Phys. Chem. C 116, 18064–18069 (2012)CrossRefGoogle Scholar
  37. 37.
    Zhou, Y., Qiu, N., Li, R., Guo, Z., Zhang, J., Fang, J., Huang, A., He, J., Zha, X., Luo, K., Yin, J.: Negative differential resistance and rectifying performance induced by doped graphene nanoribbons p-n device. Phys. Lett. A 380(9–10), 1049–1055 (2016)CrossRefGoogle Scholar
  38. 38.
    Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)CrossRefMATHGoogle Scholar
  39. 39.
    Gharekhanlou,B., Khorasani, S.: An overview of tight-binding method for two-dimensional carbon structures. Graphene: Properties, Synthesis and Application, pp. 1-37, (2011)Google Scholar
  40. 40.
    Seol, G., Guo, J.: Bandgap opening in boron nitride confined armchair graphene nanoribbon. Appl. Phys. Lett. 98, 143107 (2011)CrossRefGoogle Scholar
  41. 41.
    Sancho, M.P.L., Sancho, J.M.L., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F: Met. Phys. 14, 1205 (1984)CrossRefGoogle Scholar
  42. 42.
    Luo, X., Yang, J., Liu, H., Wu, X., Wang, Y., Ma, Y., Wei, S.H., Gong, X., Xiang, H.: Predicting two-dimensional boron-carbon compounds by the global optimization method. J. Am. Chem. Soc. 133, 16285–16290 (2011)CrossRefGoogle Scholar
  43. 43.
    Yu, S.S., Zheng, W.T., Jiang, Q.: Electronic properties of nitrogen-/boron-doped graphene nanoribbons with armchair edges. IEEE Trans. Nanotechnol. 9, 78–81 (2010)CrossRefGoogle Scholar
  44. 44.
    Cruz-Silva, E., Barnett, Z.M., Sumpter, B.G., Meunier, V.: Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles. Phys. Rev. B 83, 155445 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electrical EngineeringShahid Beheshti UniversityTehranIran

Personalised recommendations