Advertisement

Journal of Computational Electronics

, Volume 15, Issue 4, pp 1416–1423 | Cite as

Design and modeling of molecular logic circuits based on transistor structures

  • S. Safapour
  • R. Sabbaghi-Nadooshan
  • A. A. Shokri
Article

Abstract

Molecular electronics technology removes limitations on miniaturization of semiconductor-based devices. With shrinking device sizes, we can expect smaller but more efficient devices. This branch of research also speeds up the devices, which enables us to have faster processors in the future. In order to have progress in this branch of research, we need to have modeling based on realities. Due to the availability of semiconductor-based devices, they can be used to further the goals of modeling in this field. Here, a specific procedure for the design and modeling of the molecular logic circuit based on the transistor structures is provided. That is, we use the circuit modelling for a gated oligo-phenylene vinylene (OPV) molecule as a NMOS molecular transistor’s swithch and a methyl molecule as a resistor. We also benefited from the capabilities of the LTspice simulator software. Connecting these components, we could successfully conduct the circuit simulation of the combinational logic circuits, such as decoder, encoder, multiplexer, and comparator logical molecules, and prove the validity of the model.

Keywords

OPV Molecule LTspice software Molecular decoder Molecular encoder Molecular multi-multiplexer Molecular comparator 

References

  1. 1.
    Aviram, A., Ratner, M.A.: Molecular Rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)CrossRefGoogle Scholar
  2. 2.
    Chen, J., Reed, M.A., Rawlett, A.M., Tour, J.M.: Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999)CrossRefGoogle Scholar
  3. 3.
    Ball, P.: Meet the spin doctors Nature (London). 404, 918–920 (2000)Google Scholar
  4. 4.
    Collier, C.P., Mattersteig, G., Wong, E.W., Luo, Y., Beverly, K., Sampaio, J., Raymo, F.M., Stoddart, J.F., Heath, J.R.: A catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000)CrossRefGoogle Scholar
  5. 5.
    Cuevas, J.C., Scheer, E.: Molecular Electronics. An Introduction to Theory and Experiment. World Scientific Series in Nanoscience and Nanotechnology: Vol. 1 (2010)Google Scholar
  6. 6.
    Nitzan, A., Ratner, M.A.: Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003)CrossRefGoogle Scholar
  7. 7.
    Xiao, X., Xu, B., Tao, N.J.: Measurement of single molecule conductance: Benzenedithiol and benzenedimethanethiol. Nano. Lett. 4, 267–271 (2004)CrossRefGoogle Scholar
  8. 8.
    Lortscher, E., Weber, H.B., Riel, H.: Statistical Approach to Investigating Transport through Single Molecules. Phys. Rev. Lett. 98, 176807 (2007)CrossRefGoogle Scholar
  9. 9.
    Maiti, S.K.: Electron transport through polycyclic hydrocarbon molecules: A study of shot noise contribution to the power spectrum. Org. Electron. 8, 575–583 (2007)CrossRefGoogle Scholar
  10. 10.
    Kumar, M.J.: Molecular diodes and applications. Recent Patents Nanotech. 1, 51–57 (2007)CrossRefGoogle Scholar
  11. 11.
    Ellenbogen, J.C., Christopher Love, J.: Architecture for molecular electronic computers: logic structures and an adder designed from molecular electronic diodes. Proc. of IEEE.88, 386–426 (2000)Google Scholar
  12. 12.
    Ghasemi, M., Hossein Moaiyeri, M., Navi, K.: Analytical performance evaluation of Molecular logic Circuits. The 16th CSI Int. Symp. Comp. Arch. Digital systems. 104–108, (2012)Google Scholar
  13. 13.
    Ghasemi, M., Hossein Moaiyeri, M., Navi, K.: A new full adder cell for molecular electronics. Int. J. VLSI design & commun. Syst, (VLSICS). 2, 1–13 (2011)Google Scholar
  14. 14.
    Mahmoud, A., Gagliardi, A., Lugli, P.: Atomistic study of three-leg molecular devices. Organ. Electron. 24, 37–42 (2015)CrossRefGoogle Scholar
  15. 15.
    Walczak, K.: Simulations of molecular logic gates, Mesoscale Nanoscale Phys. 1–6 (2003)Google Scholar
  16. 16.
    Zahir, A., Mahmoud, A., Pulimeno, A., Graziano, M., Piccinini, G., Lugli, P.: Hierarchical Modeling of OPV-based Crossbar Architectures. \(14^{{\rm th}}\) IEEE Int. Conf. Nanotech. (IEEE-NANO), Toronto Canada. 1018–1022 (2014)Google Scholar
  17. 17.
    Mahmoud, A., Lugli, P.: Towards circuit modeling of molecular devices. IEEE Trans. Nanotech. 13, 510–516 (2014)CrossRefGoogle Scholar
  18. 18.
    Zahir, A., Zaidi, S.A.A., Pulimeno, A., Graziano, M., Demarchi, D., Masera, G., Piccinini, G.: Molecular transistor circuits: From device model to circuit simulation. Nanoscale Arch. (NANOARCH), 129–134 (2014)Google Scholar
  19. 19.
    Khoeini, F., Khoeini, F., Shokri, A.A.: Peculiar transport properties in Z-shaped graphene nanoribbons: a nanoscale NOR gate. Thin Solid Films 548, 443–448 (2013)CrossRefMATHGoogle Scholar
  20. 20.
    Mirzanian, S.M., Shokri, A.A.: Electronic transport in a molecular junction as XOR and OR gates. J. Phys. Chem. Solids. 77, 146–150 (2015)CrossRefGoogle Scholar
  21. 21.
    Shokri, A.A., Mirzanian, S.M.: Transport engineering design of AND and NOR gates with a 1,4-2-phenyl-dithiolate molecule. J. Mol. Model. 21, 28–34 (2015)CrossRefGoogle Scholar
  22. 22.
    Safapour, S., Sabbaghi-Nadooshan, R., Shokri, A.A.: Revised by nano research (2016)Google Scholar
  23. 23.
  24. 24.
    Tao, N.J.: Electron transport in molecular junctions. Nature Nanotechnol. 1, 173–181 (2006)CrossRefGoogle Scholar
  25. 25.
    Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys Rev B. 54, 17954–17961 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. Safapour
    • 1
  • R. Sabbaghi-Nadooshan
    • 1
  • A. A. Shokri
    • 2
    • 3
  1. 1.Electrical Engineering DepartmentIslamic Azad University, Central Tehran BranchTehranIran
  2. 2.Department of PhysicsPayame Noor University (PNU)TehranIran
  3. 3.Computational Physical Sciences Research Laboratory, Department of Nano-ScienceInstitute for Studies in Theoretical Physics and Mathematics (IPM)TehranIran

Personalised recommendations