Journal of Computational Electronics

, Volume 15, Issue 4, pp 1511–1520 | Cite as

Temperature-dependent efficiency droop analysis of InGaN MQW light-emitting diode with modified ABC model

  • P. Prajoon
  • D. Nirmal
  • M. Anuja Menokey
  • J. Charles Pravin


In this work, the origin of the efficiency droop at high injection current in an InGaN multiple-quantum-well light-emitting diode is suggested to be saturation of the radiative efficiency and insufficient carrier injection efficiency. A simple internal quantum efficiency (IQE) estimation method is developed by modifying the conventional ABC model to include carrier leakage mechanisms such as thermionic emission and carrier overflow, to account for the carrier injection efficiency at high current densities. The results show that thermionic emission and carrier overflow play a dominant role in the carrier leakage mechanism at high injection current. The data obtained from this analysis enable inference of the temperature dependence of the radiative/nonradiative coefficients and carrier leakage mechanisms. In addition, the model predicts the temperature dependence and rationale behind the degradation of the IQE at higher injection currents. Furthermore, the modeled output results show good fit with experimental data.


ABC model IQE InGaN MQW LED Quantum well 



The authors would like to thank the VLSI Laboratory of Karunya University for assistance to carry out this research work.


  1. 1.
    Cha, O.H., Kim, C.H., Lee, J.S., Jeong, J.P., Park, J.S.: Quantum efficiency in multi-quantum well InGaN/GaN light-emitting diodes with electroluminescence characteristics. J. Korean Phys. Soc. 55(1), 271–274 (2009)CrossRefGoogle Scholar
  2. 2.
    Wang, J.C., Fang, C.H., Wu, Y.F., Chen, W.J., Kuo, D.C., Fan, P.L., Jiang, J.A., Nee, T.E.: The effect of junction temperature on the optoelectrical properties of InGaN/GaN multiple quantum well light-emitting diodes. J. Lumin. 132(2), 429–433 (2012)CrossRefGoogle Scholar
  3. 3.
    Kim, D.S., Han, B.: Effect of junction temperature on heat dissipation of high power light emitting diodes. J. Appl. Phys. 119, 125104 (2016)CrossRefGoogle Scholar
  4. 4.
    Jebalin, B.K., Rekh, A.S., Prajoon, P., Godwinraj, D., Kumar, N.M., Nirmal, D.: Unique model of polarization engineered AlGaN/GaN based HEMTs for high power applications. Superlatt. Microstruct. 78, 210–223 (2015)CrossRefGoogle Scholar
  5. 5.
    Huh, C., Kim, S.-W., Kim, H.-S., Kim, H.-M., Hwang, H., Park, S.-J.: Effects of sulfur treatment on electrical and optical performance of InGaN/GaN multiple-quantum-well blue light-emitting diodes. Appl. Phys. Lett. 78, 1766–1768 (2001)CrossRefGoogle Scholar
  6. 6.
    Sugiura, L.: Dislocation motion in GaN light-emitting devices and its effect on device lifetime. J. Appl. Phys. 81, 1633–1638 (1997)CrossRefGoogle Scholar
  7. 7.
    Osinski, M., Zeller, J., Chiu, P.C., Phillips, B.S., Barton, D.L.: AlGaN/InGaN/GaN blue light emitting diode degradation under pulsed current stress. Appl. Phys. Lett. 69, 898–900 (1996)CrossRefGoogle Scholar
  8. 8.
    Piprek, J.: Efficiency droop in nitride-based light-emitting diodes. Phys. Stat. Sol. 207(10), 2217–2225 (2010)CrossRefGoogle Scholar
  9. 9.
    Shin, D.S., Han, D.P., Oh, J.Y., Shim, J.I.: Study of droop phenomena in InGaN-based blue and green light-emitting diodes by temperature dependent electroluminescence. Appl. Phys. Lett. 100(15), 153506-1–153506-4 (2012)Google Scholar
  10. 10.
    Shim, J.I., Han, D.P., Kim, H., Shin, D.S., Lin, G.B., Meyaard, D.S., Shan, Q., Cho, J., Schubert, E.F., Shim, H., Sone, C.: Efficiency droop in AlGaInP and GaInN light-emitting diodes. Appl. Phys. Lett. 100(11), 111106 (2012)CrossRefGoogle Scholar
  11. 11.
    Meyaard, D.S., Lin, G.B., Shan, Q., Cho, J., Schubert, E.F., Shim, H., Kim, M.H., Sone, C.: Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes. Appl. Phys. Lett. 99(25), 251115 (2011)CrossRefGoogle Scholar
  12. 12.
    Fujiwara, K., Jimi, H., Kaneda, H.: Temperature-dependent droop of electroluminescence efficiency in blue (In,Ga)N quantum-well diodes. Phys. Stat. Sol. 6(S2), S814–S817 (2009)CrossRefGoogle Scholar
  13. 13.
    Chhajed, S., Cho, J., Schubert, E.F., Kim, J.K., Koleske, D.D., Crawford, M.H.: Temperature-dependent light-output characteristics of GaInN light-emitting diodes with different dislocation densities. Phys. Stat. Sol. 208(4), 947–950 (2011)CrossRefGoogle Scholar
  14. 14.
    Heikkila, O., Oksanen, J., Tulkki, J.: Ultimate limit and temperature dependency of light-emitting diode efficiency. J. Appl. Phys. 105(9), 093119 (2009)CrossRefGoogle Scholar
  15. 15.
    Prajoon, P., Nirmal, D., Anuja, M.M., Charles, P.J.: Efficiency enhancement of InGaN MQW LED using compositionally step graded InGaN barrier on SiC substrate. IEEE J. Disp.Technol., (2016) doi: 10.1109/JDT.2016.2570814
  16. 16.
    Cho, J., Schubert, E.F., Kim, J.K.: Efficiency droop in light-emitting diodes: challenges and countermeasures. Laser Photon. Rev. 7(3), 408–421 (2013)CrossRefGoogle Scholar
  17. 17.
    Kim, M.H., Schubert, M.F., Dai, Q., Kim, J.K., Schubert, E.F., Piprek, J., Park, Y.: Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91, 183507 (2007)CrossRefGoogle Scholar
  18. 18.
    Zhu, L.H., Liu, W., Zeng, F.M., Gao, Y.L., Liu, B.L., Lu, Y.J., Chen, Z.: Efficiency droop improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum wells. IEEE Photon. J. 5(2), 8200208 (2013)CrossRefGoogle Scholar
  19. 19.
    Sun, Y., Guo, H., Jin, L., Cho, Y.-H., Suh, E.K., Lee, H.J., Choi, R.J., Hahn, Y.B.: Optical excitation study on the efficiency droop behaviours of InGaN/GaN multiple-quantum-well structures. Appl. Phys. B 114(4), 551–555 (2014)CrossRefGoogle Scholar
  20. 20.
    Jinliang, X., Wang, T.: Efficiency droop improvement for InGaN-based light-emitting diodes with gradually increased in composition across the active region. Phys. E 52, 813 (2013)Google Scholar
  21. 21.
    Dai, Q., Shan, Q., Cho, J., Schubert, E.F., Crawford, M.H., Koleske, D.D., Kim, M.H., Park, Y.: On the symmetry of efficiency-versus-carrier-concentration curves in GaInN/GaN light-emitting diodes and relation to droop-causing mechanisms. Appl. Phys. Lett. 98, 033506 (2011)CrossRefGoogle Scholar
  22. 22.
    Dai, Q., Shan, Q., Wang, J., Chhajed, S., Cho, J., Schubert, E.F., Crawford, M.H., Koleske, D.D., Kim, M.-H., Park, Y.: Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes. Appl. Phys. Lett. 97, 133507 (2010)CrossRefGoogle Scholar
  23. 23.
    David, A., Grundman, M.J.: Droop in InGaN light-emitting diodes: a differential carrier lifetime analysis. Appl. Phys. Lett. 96, 103504 (2010)CrossRefGoogle Scholar
  24. 24.
    Chang, S.-J., Lin, W.-H., Chun-Ta, Y.: GaN-based multiquantum well light-emitting diodes with tunnel-junction-cascaded active regions. IEEE Electron Device Lett. 36(4), 366–368 (2015)CrossRefGoogle Scholar
  25. 25.
    Schubert, M.F., Chhajed, S., Kim, J.K., Schubert, E.F., Koleske, D.D., Crawford, M.H., Lee, S.R., Fischer, A.J., Thaler, G., Banas, M.A.: Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes. Appl. Phys. Lett. 91, 231114 (2007)CrossRefGoogle Scholar
  26. 26.
    Prajoon, P., Nirmal, D., Menokey, M.A., Pravin, J.C.: A modified ABC model in InGaN MQW LED using compositionally step graded alternating barrier for efficiency improvement. Superlatt. Microstruct. 96, 155–163 (2016)CrossRefGoogle Scholar
  27. 27.
    Zhao, H., Liu, G., Arif, R.A., Tansu, N.: Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes. Solid State Electron. 54(10), 1119–1124 (2010)CrossRefGoogle Scholar
  28. 28.
    Li, Y., Chen, S., Tian, W., Wu, Z., Fang, Y., Dai, J., Chen, C.: Advantages of AlGaN-based 310 nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers. IEEE Photon. J. 5(4), 8200309 (2013)CrossRefGoogle Scholar
  29. 29.
    Lu, H.M., Chen, G.X.: Design strategies for mitigating the influence of polarization effects on GaN-based multiple quantum well light-emitting diodes. J. Appl. Phys. 109, 093102 (2011)CrossRefGoogle Scholar
  30. 30.
    Lang, J.R., Young, N.G., Farrell, R.M., Wu, Y.-R., Speck, J.S.: Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells. Appl. Phys. Lett. 101, 181105 (2012)CrossRefGoogle Scholar
  31. 31.
    Zhao, H., Liu, G., Zhang, J., Arif, R.A., Tansu, N.: Analysis of internal quantum efficiency and current injection efficiency in III-nitride light-emitting diodes. J. Disp. Technol. 9(4), 212–225 (2013)CrossRefGoogle Scholar
  32. 32.
    Fred Schubert, E.: Light-Emitting Diodes. Cambridge University Press, Cambridge (2003)Google Scholar
  33. 33.
    Tian, P., McKendry, J.J., Johannes Herrnsdorf, D., Watson, S., Ferreira, R., Watson, I.M., Gu, E., Kelly, A.E., Dawson, M.D.: Temperature-dependent efficiency droop of blue InGaN microlight emitting diodes. Appl. Phys. Lett. 105, 171107 (2014)Google Scholar
  34. 34.
    Tansua, N., Mawst, L.J.: Current injection efficiency of InGaAsN quantum-well lasers. J. Appl. Phys. Lett. 97, 054502 (2005)Google Scholar
  35. 35.
    Han, S.-H., Lee, D.-Y., Lee, S.-J., Cho, C.-Y., Kwon, M.-K., Lee, S.P., Noh, D.Y., Kim, D.-J., Kim, Y.C., Park, S.-J.: Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett. 94, 231123 (2009)CrossRefGoogle Scholar
  36. 36.
    Boroditsky, M., Yablonovitch, E.: Light-emitting diode extraction efficiency. Proc. SPIE 3002, 119–122 (1997)CrossRefGoogle Scholar
  37. 37.
    Li, C.K., Wu, Y.-R.: Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs. IEEE Trans. Electron Devices 59(2), 400–407 (2012)Google Scholar
  38. 38.
    Morkoc, H.: Handbook of Nitride Semiconductors and Devices, pp. 963–967. Wiley, Weinheim (2008)Google Scholar
  39. 39.
    Garbuzov, D.Z.: Radiation effects, lifetimes and probabilities of band-to-band transitions in direct A3B5 compounds of GaAs type. J. Luminesc. 27, 109 (1982)CrossRefGoogle Scholar
  40. 40.
    Sermage, B., Heritage, J.P., Dutta, N.K.: Temperature dependence of carrier lifetime and auger recombination in 1.3 m InGaAsP. J. Appl. Phys. 57(12), 15 (1985)CrossRefGoogle Scholar
  41. 41.
    Kudryk, Y.Y., Tkachenko, A.K., Zinovchuk, A.V.: Temperature-dependent efficiency droop in InGaN-based light-emitting diodes induced by current crowding. Semicond. Sci. Technol. 27, 055013 (2012)CrossRefGoogle Scholar
  42. 42.
    Ni, X., Li, X., Lee, J., Liu, S., Avrutin, V., Ozgur, U., Morko, H., Matulionis, A.: Hot electron effects on efficiency degradation in InGaN light emitting diodes and designs to mitigate them. J. Appl. Phys. 108, 033112 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • P. Prajoon
    • 1
  • D. Nirmal
    • 1
  • M. Anuja Menokey
    • 1
  • J. Charles Pravin
    • 1
  1. 1.Department of Electronics and Communication EngineeringKarunya UniversityCoimbatoreIndia

Personalised recommendations