Journal of Computational Electronics

, Volume 15, Issue 4, pp 1577–1592 | Cite as

Design and simulation of a semispherical semiconductor to construct a beta-voltaic battery using c-Si and a-Si:H materials with different doping concentration

  • H. Sadeghi
  • S. M. Mostajabodavati
  • A. Eshaghi
  • D. Rahi


Investigation of beta-voltaic batteries is a multi-aspect problem, because it involves two dimensions: nuclear and solid state. A beta-voltaic battery converts kinetic energy from beta (\(\upbeta \)) particles into electrical energy, similar to the photovoltaic conversion of photon energy by solar cells. In this work, nuclear simulation was carried out first, and the results were used in subsequent solid-state simulation. The energy conversion process was modeled and simulated using crystalline silicon (c-Si) and hydrogenated amorphous silicon (a-Si:H) as beta-voltaic semiconductor substrate. Performance parameters (i.e., open-circuit voltage, short-circuit current, and leakage current) of the c-Si beta-voltaic battery were optimized as functions of doping concentration and temperature. In addition, the effects of doping concentration and defect density on the recombination rate, e–h concentration, and e–h current density for a-Si:H were analyzed.


Beta-voltaic Beta particles c-Si a-Si:H Numerical simulation Doping concentration 


  1. 1.
    Wacharasindhu, T., Nullmeyer, B.R., Kwon, J.W., Robertson, J.D., Garnov, A.Y.: Mechanisms Leading to Losses in Conventional Beta-voltaics and Evolution: Utilizing Composite Semiconductor With Infused Radioisotope for Efficiency Improvement. Microelectromechanical Systems, Journal of 23, 56–65 (2014)CrossRefGoogle Scholar
  2. 2.
    Bao, R., Brand, P.J., Chrisey, D.B.: Beta-voltaic performance of radiation-hardened high-efficiency Si space solar cells. Electron Devices, IEEE Transactions on 59, 1286–1294 (2012)CrossRefGoogle Scholar
  3. 3.
    Bower, K.E., Barbanel, Y.A., Shreter, Y.G., Bohnert, G.W.: Polymers, phosphors, and voltaics for radioisotope microbatteries. CRC Press, Boca Raton (2010)Google Scholar
  4. 4.
    Guo, H., Lal A.: Nanopower beta-voltaic microbatteries, In: TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003, pp. 36-39 (2003)Google Scholar
  5. 5.
    Flicker, H., Loferski, J., Elleman, T.: Construction of a promethium-147 atomic battery. Electron Devices, IEEE Transactions on 11, 2–8 (1964)CrossRefGoogle Scholar
  6. 6.
    Da-Yong, Q., Wei-Zheng, Y., Peng, G., Xian-Wang, Y., Bo, Z., Lin, Z., Hui, G., Hong-Jian, Z.: Demonstration of a 4H SiC beta-voltaic nuclear battery based on Schottky barrier diode. Chinese Physics Letters 25, 3798–3800 (2008)CrossRefGoogle Scholar
  7. 7.
    Wu, K., Dai, C., Guo H.: A theoretical study on silicon beta-voltaics using Ni-63, In: Nano/Micro Engineered and Molecular Systems (NEMS), 2011 IEEE International Conference, 724-727 (2011)Google Scholar
  8. 8.
    Trucchi, D., Cappelli, E., Lisi, N., Ascarelli, P.: Feasibility of CVD diamond radiation energy conversion devices. Diamond and related materials 15, 1980–1985 (2006)CrossRefGoogle Scholar
  9. 9.
    Nejad, G.R.G., Rahmani, F., Abaeiani, G.R.: Design and optimization of beta-cell temperature sensor based on 63 Ni-Si. Applied Radiation and Isotopes 86, 46–51 (2014)CrossRefGoogle Scholar
  10. 10.
    Prelas, M.A., Weaver, C.L., Watermann, M.L., Lukosi, E.D., Schott, R.J., Wisniewski, D.A.: A review of nuclear batteries. Progress in Nuclear Energy 75, 117–148 (2014)CrossRefGoogle Scholar
  11. 11.
    Cross, W., Ing, H., Freedman, N.: A short atlas of beta-ray spectra. Physics in Medicine and Biology 28, 1251–1260 (1983)CrossRefGoogle Scholar
  12. 12.
    Hee, J., Gyuseong, C., Tae, H., Young, S.: Comparative study on the radiation damage of a-Si: H pin diodes made by PECVD and ion shower doping Nucl. Sci. IEEE 49, 2244–2249 (2002)Google Scholar
  13. 13.
    Kishimoto, N., Amekura, H., Kono, K., Lee, C.: Radiation resistance of amorphous silicon in optoelectric properties under proton bombardment. Journal of nuclear materials 258, 1908–1913 (1998)CrossRefGoogle Scholar
  14. 14.
    Loferski, J., Rappaport, P.: Radiation damage in Ge and Si detected by carrier lifetime changes: Damage thresholds. Solar Cells 29, 87–102 (1990)CrossRefGoogle Scholar
  15. 15.
    Nashashibi, T., Austin, I., Seakle, T.: Photoluminescence in pure and doped amorphous silicon. Philosophical Magazine 35, 831–835 (1977)CrossRefGoogle Scholar
  16. 16.
    Staebler, D., Wronski, C.: Reversible conductivity changes in discharge-produced amorphous Si. Applied Physics Letters 31, 292–294 (1977)CrossRefGoogle Scholar
  17. 17.
    Fantoni, A., Vieira, M., Martins, R.: Simulation of hydrogenated amorphous and microcrystalline silicon optoelectronic devices. Mathematics and Computers in Simulation 49, 381–401 (1999)CrossRefGoogle Scholar
  18. 18.
    Zanzucchi, P., Wronski, C., Carlson, D.E.: Optical and photoconductive properties of discharge-produced amorphous silicon. Journal of Applied Physics 48, 5227–5236 (1977)CrossRefGoogle Scholar
  19. 19.
    Kosteski, T., Kherani, N., Gaspari, F., Zukotynski, S., Shmayda, W.: Tritiated amorphous silicon films and devices. Journal of Vacuum Science & Technology A 16, 893–896 (1998)CrossRefGoogle Scholar
  20. 20.
    Beyer, W., Wagner, H.: The role of hydrogen in a-Si: H–results of evolution and annealing studies. Journal of Non-Crystalline Solids 59, 161–168 (1983)CrossRefGoogle Scholar
  21. 21.
    Lee, S.-K., Son, W.-H., Lee, T.-Y., Choi, S.-Y.: Improvement of the Electrical Characteristics of a-Si: H TFTs Using the Phosphorus Doping in the Active Layer. Molecular Crystals and Liquid Crystals 601, 71–78 (2014)Google Scholar
  22. 22.
    Wyrsch N., Riesen Y., Franco A., Dunand S., Kind H., Schneider S., Ballif C.: Amorphous silicon based beta-voltaic devices, MRS Proceedings. Cambridge Univ Press, pp. 73-78 (2014)Google Scholar
  23. 23.
    Gummel, H., Poon, H.: An integral charge control model of bipolar transistors. Bell System Technical Journal 49, 827–852 (1970)CrossRefGoogle Scholar
  24. 24.
    De Mari, A.: An accurate numerical steady-state one-dimensional solution of the P-N junction. Solid-State Electronics 11, 33–58 (1968)CrossRefGoogle Scholar
  25. 25.
    Mnatsakanov, T., Rostovtsev, I., Philatov, N.: Investigation of the effect of nonlinear physical phenomena on charge carrier transport in semiconductor devices. Solid-state electronics 30, 579–585 (1987)CrossRefGoogle Scholar
  26. 26.
    Gray, J.L.: A computer model for the simulation of thin-film silicon-hydrogen alloy solar cells. Electron Devices, IEEE Transactions on 36, 906–912 (1989)CrossRefGoogle Scholar
  27. 27.
    Smole, F., Furlan, J.: Effects of abrupt and graded a-Si: C: H/a-Si: H interface on internal properties and external characteristics of p-i-na-Si: H solar cells. Journal of applied physics 72, 5964–5969 (1992)CrossRefGoogle Scholar
  28. 28.
    Linden M.V.D., Schropp R., Lekkerkerker O., Ouwens J., Van Der Weg W.: Effect of Light Soaking on the Spectrally and Spatially Resolved Collection Efficiency of a-Si: H Solar Cells, MRS Proceedings. Cambridge Univ Press, p. 625 (1993)Google Scholar
  29. 29.
    Shapiro, F.R.: Proposed time-of-flight experiments across an amorphous semiconductor heterojunction. Journal of applied physics 70, 4001–4003 (1991)CrossRefGoogle Scholar
  30. 30.
    Sze, S.M., Ng, K.K.: Physics of semiconductor devices. John Wiley & Sons, New York (2006)CrossRefGoogle Scholar
  31. 31.
    Miley, G. H., Lou, N.: A Nanopore Multilayer Isotope Battery Using Radioisotopes from Nuclear Wastes, 9th Annual International Energy Conversion Engineering Conference, 1-7 (2011)Google Scholar
  32. 32.
    Mohammed, W.F., Al-Tikriti, M.N.: Theoretical models and simulation of optoelectronic properties of a-Si-H PIN photosensors. Proceedings of the 8th International Conference on Sensing Technology, Liverpool, UK, p. 578-582 (2014)Google Scholar
  33. 33.
    Gürler, O., Yalçın, S.: A practical method for calculation of mass-attenuation coefficients of \(\upbeta \) particles. Annals of Nuclear Energy 32, 1918–1925 (2005)CrossRefGoogle Scholar
  34. 34.
    Hack, M., Shur, M.: Physics of amorphous silicon alloy p-i-n solar cells. Journal of Applied Physics 58, 997–1020 (1985)CrossRefGoogle Scholar
  35. 35.
    Yao, S., Song, Z., Wang, X., San, H., Yu, Y.: Design and simulation of beta-voltaic battery using large-grain polysilicon. Applied Radiation and Isotopes 70, 2388–2394 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • H. Sadeghi
    • 1
  • S. M. Mostajabodavati
    • 2
  • A. Eshaghi
    • 3
  • D. Rahi
    • 2
  1. 1.Health Physics DepartmentMalek-ashtar University Of TechnologyShahin-shahrIran
  2. 2.Department of Nuclear Engineering, Faculty of Advanced Sciences and TechnologiesUniversity of IsfahanIsfahanIran
  3. 3.Faculty of Materials Science and EngineeringMalek-ashtar University of TechnologyShahin-shahrIran

Personalised recommendations