Advertisement

Journal of Computational Electronics

, Volume 15, Issue 4, pp 1291–1296 | Cite as

20-nm T-gate composite channel enhancement-mode metamorphic HEMT on GaAs substrates for future THz applications

  • J. Ajayan
  • D. Nirmal
Article

Abstract

In this paper, the RF and DC behaviours of a SiN-passivated 20-nm gate length metamorphic high electron mobility transistor (MHEMT) on GaAs substrate with \({\updelta }\)-doped sheets on either side of the composite channel are studied using the Synopsys TCAD tool. The 20-nm enhancement-mode MHEMT with \({\updelta }\)-doped sheets on either side of the \(\hbox {In}_{0.75}\hbox {Ga}_{0.25}\hbox {As}\)/InAs/ \(\hbox {In}_{0.75}\hbox {Ga}_{0.25}\hbox {As}\) multilayer channel shows a transconductance of 3000 mS/mm, cut-off frequency (\({f}_{\mathrm{T}}\)) of 760 GHz and a maximum-oscillation frequency (\({f}_{\mathrm{max}}\)) of 1270 GHz. The threshold voltage of the device is found to be 0.07 V. The room-temperature Hall mobilities of the two-dimensional sheet charge density (2DEG) are measured to be over \(12800\,\hbox {cm}^{2}\)/Vs with a sheet charge density larger than 4 \(\times \) \(10^{12}\,\hbox {cm}^{-2}\). These high-performance enhancement-mode MHEMTs are attractive candidates for future terahertz applications such as high-resolution radars for space research and also for low-noise wide-bandwidth amplifier for future communication systems.

Keywords

Composite channel Device simulation Enhancement-mode transistors GaAs substrate Metamorphic high electron mobility transistor (MHEMT) 

References

  1. 1.
    Chau, R.: Integrated nano electronics for the future. Nat. Mater. 6(11), 810 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    del Alamo, J.A.: Nanometre electronics with III–V compound semiconductors. Nature 479(7373), 317 (2011)CrossRefGoogle Scholar
  3. 3.
    Ajayan, J.: A review of InP/InAlAs\(\backslash \)InGaAs based transistors for high frequency applications. Superlattice Microstruct 86(10), 1–19 (2015)CrossRefGoogle Scholar
  4. 4.
    Deal, W.: THz monolithic integrated circuits using InP high electron mobility transistors. IEEE Trans Terahertz Sci Technol 1(1), 25 (2011)CrossRefGoogle Scholar
  5. 5.
    Kim, D.H.: \({f}_{{\rm T}}= 688{\rm GHz}\) and \({f}_{{\rm max}}= 800{\rm GHz}\) in Lg \(=\) 40nm \({\rm In}_{0.7}{\rm Ga}_{0.3}{\rm As}\) MHEMTs With \({g}_{{\rm m}}\)_\({\rm max}\)>\(2.7{\rm mS}/{\rm m}\). In: Proceedings of IEDM Technical Digest, p. 319 (2011)Google Scholar
  6. 6.
    Kim, D.H.: 30-nm InAs pseudomorphic HEMTs on an InP substrate with a current-gain cut-off frequency of 628 GHz. IEEE Electron Device Lett. 29(8), 830–833 (2008)CrossRefGoogle Scholar
  7. 7.
    Shinohara, K.: Ultra high-speed pseudomorphic InGaAs/InAlAs HEMT with 400 GHz cut-off frequency. IEEE Electron Device Lett. 22(6), 507 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Yamashita, Y.: Pseudomorphic \({\rm In}_{0.52}{\rm Al}_{0.48} {\rm As}/{\rm In}_{0.7}{\rm Ga}_{0.3}{\rm As}\) HEMTs with an ultra high \({f}_{\text{ T }}\) of 562 GHz. IEEE Electron Device Lett. 23(10), 573–575 (2002)CrossRefGoogle Scholar
  9. 9.
    Shinohara, K.: 547 GHz \({f}_{{\rm t}} {\rm In}_{0.7}{\rm Ga}_{0.3} {\rm As}/{\rm In}_{0.52} {\rm Al}_{0.48} {\rm As}\) HEMTs with reduced source and drain resistance. IEEE Electron Device Lett. 25(5), 241–243 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lai, R.: Sub 50 nm InP HEMT device with f\(_{\rm max}\) greater than 1 THz, In: Proceedings of IEDM Technical Digest, p. 609 (2007)Google Scholar
  11. 11.
    Kim, D.H.: 30-nm InAs PHEMTs with \({f}_{{\rm T}} = 644 {\rm GHz}\) and f\(_{\rm max} =\) 681 GHz. IEEE Electron Device Lett. 31(8), 806 (2010)CrossRefGoogle Scholar
  12. 12.
    Ono, H.: High frequency characteristics and saturation electron velocity of InAlAs/InGaAs metamorphic high electron mobility transistors at high temperatures. In: IEEE International Conference on Indium Phosphide & Related Materials, (IPRM), p. 280 (2004)Google Scholar
  13. 13.
    Yeon, S.J.: 610GHz InAlAs/InGaAs metamorphic HEMTs with ultra short 15-nm gate. In: Proceedings of IEDM Techinal Digest, p. 613, (2007)Google Scholar
  14. 14.
    Hwang, C.-J.: An ultra low power MMIC amplifier using 50nm \({\updelta }\)-doped \({\rm In}_{0.52}{\rm Al}_{0.48}{\rm As}/{\rm In}_{0.53}{\rm Ga}_{0.48}{\rm As}\) metamorphic HEMT. IEEE Electron Device Lett. 31(11), 1230 (2010)CrossRefGoogle Scholar
  15. 15.
    Xu, D.: Asymmetrically recessed 50-nm gate length metamorphic high electron mobility transistor with enhanced gain performance. IEEE Electron Device Lett. 29(1), 4 (2008)CrossRefGoogle Scholar
  16. 16.
    Xu, D.: 50-nm metamorphic high electron mobility transistors with high gain and high breakdown voltages. IEEE Electron Device Lett. 30(8), 793–795 (2009)CrossRefGoogle Scholar
  17. 17.
    Hoke, W.E.: High indium metamorphic HEMT on a GaAs substrate. J Cryst Growth 251(1), 827–831 (2003)CrossRefGoogle Scholar
  18. 18.
    Ha, W.: Enhancement mode metamorphic HEMT on GaAs substrate with 2 S/mm \({g}_{{\rm m}}\) and 490 GHz \({f}_{{\rm T}}\). IEEE Electron Device Lett. 29(5), 419–421 (2008)CrossRefGoogle Scholar
  19. 19.
    Zaknoune, M.: InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltages. IEEE Electron Device Lett. 19(9), 345 (1998)CrossRefGoogle Scholar
  20. 20.
    Chang, Y.C.: Low noise metamorphic HEMTs with reflowed 0.1- \(\upmu \)m T-gate. IEEE Electron Device Lett. 25(6), 348–350 (2004)CrossRefGoogle Scholar
  21. 21.
    Leuther, A.: Metamorphic 50-nm InAs channel HEMT. In: IEEE International Conference on Indium Phosphide & Related Materials, (IPRM), p. 129 (2005)Google Scholar
  22. 22.
    Lee, K.-S.: 35 nm zigzag T-gate \({\rm In}_{0.52}{\rm Al}_{0.48}{\rm As}/{\rm In}_{0.53}{\rm Ga}_{0.47}{\rm As}\) metamorphic GaAs HEMTs with an ultra high \({f}_{{\rm max}}\) of 520 GHz. IEEE Electron Device Lett. 28(8), 672–675 (2007)CrossRefGoogle Scholar
  23. 23.
    Elgaid, K.: 50-nm T-gate metamorphic GaAs HEMTs with \({f}_{{\rm T}}\) of 440 GHz and noise figure of 0.7 dB at 26 GHz. IEEE Electron Device Lett. 26(11), 784–786 (2005)CrossRefGoogle Scholar
  24. 24.
    Leuther, A.: 70-nm Low-noise metamorphic HEMT technology on 4 Inch GaAs wafers. In: IEEE International Conference on Indium Phosphide & Related Materials, (IPRM), pp. 215–218 (2003)Google Scholar
  25. 25.
    Kuo, C.-I.: RF performance improvement of metamorphic high electron mobility transistor using \(({\rm In}_{{\rm x}}{\rm Ga}_{1-{\rm x}}\text{ As }) {\rm m}/({\rm InAs}) {\rm n}\) superlattice-channel structure for millimeter-wave applications. IEEE Electron Device Lett. 31(7), 677 (2010)CrossRefGoogle Scholar
  26. 26.
    Sahoo, K.C.: Novel metamorphic HEMT with highly doped InGaAs source/drain regions for high frequency applications. IEEE Trans. Electron Device 57(10), 2594 (2010)CrossRefGoogle Scholar
  27. 27.
    Maher, H.: A 200 GHz true E-mode low noise MHEMT. IEEE Trans. Electron Device 54(7), 1626 (2007)CrossRefGoogle Scholar
  28. 28.
    Xiao Feng, W.U.: Fabrication of 150-nm \({\rm Al}_{0.48}{\rm In}_{0.52}{\rm As}/{\rm Ga}_{0.47}{\rm In}_{0.53}{\rm As}\) mHEMTs on GaAs substrates. Sci China 55(12), 2389 (2012)Google Scholar
  29. 29.
    Zeng, Y.: High quality metamorphic HEMT grown on GaAs substrates by MBE. J Cryst Growth 227, 210–213 (2001)CrossRefGoogle Scholar
  30. 30.
    Li, H.: Metamorphic AlInAs/GaInAs HEMTs on GaAs substrates by MOCVD. IEEE Electron Device Lett. 29(6), 561 (2008)CrossRefGoogle Scholar
  31. 31.
    Xu, D.: Gate length scaling of ultra short metamorphic high electron mobility transistors with asymmetrically recessed gate contacts for millimetre and sub-millimeter wave applications. IEEE Trans. Electron Device 58(5), 1408 (2011)CrossRefGoogle Scholar
  32. 32.
    Das, M.B.: A high aspect ratio design approach to millimeter-wave HEMT structures. IEEE Trans. Electron Device 32(1), 11–17 (1985)CrossRefGoogle Scholar
  33. 33.
    Leuther, A.: 20 nm metamorphic HEMT technology for terahertz monolithic integrated circuits. In: Proceedings of the 9th European Microwave Integrated Circuits Conference, p.84 (2014)Google Scholar
  34. 34.
    Boudrissa, M.: Enhancement mode \({\rm Al}_{0.66}{\rm In}_{0.34} {\rm As}/{\rm Ga}_{0.67}{\rm In}_{0.33}{\rm As}\) metamorphic HEMT: modelling and measurements. IEEE Trans. Electron Device 48(6), 1037 (2001)CrossRefGoogle Scholar
  35. 35.
    Huang, C.C.: Comprehensive temperature dependent studies of metamorphic high electron mobility transistor with double and single \({\updelta }\)-doped structures. IEEE Trans. Electron Device 58(12), 4276 (2011)CrossRefGoogle Scholar
  36. 36.
    Hsu, W.-C.: Performance improvement in tensile-strained \({\rm In}_{0.5}{\rm Al}_{0.5}{\rm As}/{\rm In}_{{\rm x}} {\rm Ga}_{1-{\rm x}}{\rm As}/{\rm In}_{0.5}{\rm Al}_{0.5}{\rm As}\) metamorphic HEMT. IEEE Trans. Electron Device 53(3), 406–412 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringKarunya UniversityCoimbatoreIndia

Personalised recommendations