Skip to main content
Log in

20-nm T-gate composite channel enhancement-mode metamorphic HEMT on GaAs substrates for future THz applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, the RF and DC behaviours of a SiN-passivated 20-nm gate length metamorphic high electron mobility transistor (MHEMT) on GaAs substrate with \({\updelta }\)-doped sheets on either side of the composite channel are studied using the Synopsys TCAD tool. The 20-nm enhancement-mode MHEMT with \({\updelta }\)-doped sheets on either side of the \(\hbox {In}_{0.75}\hbox {Ga}_{0.25}\hbox {As}\)/InAs/ \(\hbox {In}_{0.75}\hbox {Ga}_{0.25}\hbox {As}\) multilayer channel shows a transconductance of 3000 mS/mm, cut-off frequency (\({f}_{\mathrm{T}}\)) of 760 GHz and a maximum-oscillation frequency (\({f}_{\mathrm{max}}\)) of 1270 GHz. The threshold voltage of the device is found to be 0.07 V. The room-temperature Hall mobilities of the two-dimensional sheet charge density (2DEG) are measured to be over \(12800\,\hbox {cm}^{2}\)/Vs with a sheet charge density larger than 4 \(\times \) \(10^{12}\,\hbox {cm}^{-2}\). These high-performance enhancement-mode MHEMTs are attractive candidates for future terahertz applications such as high-resolution radars for space research and also for low-noise wide-bandwidth amplifier for future communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chau, R.: Integrated nano electronics for the future. Nat. Mater. 6(11), 810 (2007)

    Article  MathSciNet  Google Scholar 

  2. del Alamo, J.A.: Nanometre electronics with III–V compound semiconductors. Nature 479(7373), 317 (2011)

    Article  Google Scholar 

  3. Ajayan, J.: A review of InP/InAlAs\(\backslash \)InGaAs based transistors for high frequency applications. Superlattice Microstruct 86(10), 1–19 (2015)

    Article  Google Scholar 

  4. Deal, W.: THz monolithic integrated circuits using InP high electron mobility transistors. IEEE Trans Terahertz Sci Technol 1(1), 25 (2011)

    Article  Google Scholar 

  5. Kim, D.H.: \({f}_{{\rm T}}= 688{\rm GHz}\) and \({f}_{{\rm max}}= 800{\rm GHz}\) in Lg \(=\) 40nm \({\rm In}_{0.7}{\rm Ga}_{0.3}{\rm As}\) MHEMTs With \({g}_{{\rm m}}\)_\({\rm max}\)>\(2.7{\rm mS}/{\rm m}\). In: Proceedings of IEDM Technical Digest, p. 319 (2011)

  6. Kim, D.H.: 30-nm InAs pseudomorphic HEMTs on an InP substrate with a current-gain cut-off frequency of 628 GHz. IEEE Electron Device Lett. 29(8), 830–833 (2008)

    Article  Google Scholar 

  7. Shinohara, K.: Ultra high-speed pseudomorphic InGaAs/InAlAs HEMT with 400 GHz cut-off frequency. IEEE Electron Device Lett. 22(6), 507 (2001)

    Article  MathSciNet  Google Scholar 

  8. Yamashita, Y.: Pseudomorphic \({\rm In}_{0.52}{\rm Al}_{0.48} {\rm As}/{\rm In}_{0.7}{\rm Ga}_{0.3}{\rm As}\) HEMTs with an ultra high \({f}_{\text{ T }}\) of 562 GHz. IEEE Electron Device Lett. 23(10), 573–575 (2002)

    Article  Google Scholar 

  9. Shinohara, K.: 547 GHz \({f}_{{\rm t}} {\rm In}_{0.7}{\rm Ga}_{0.3} {\rm As}/{\rm In}_{0.52} {\rm Al}_{0.48} {\rm As}\) HEMTs with reduced source and drain resistance. IEEE Electron Device Lett. 25(5), 241–243 (2004)

    Article  MathSciNet  Google Scholar 

  10. Lai, R.: Sub 50 nm InP HEMT device with f\(_{\rm max}\) greater than 1 THz, In: Proceedings of IEDM Technical Digest, p. 609 (2007)

  11. Kim, D.H.: 30-nm InAs PHEMTs with \({f}_{{\rm T}} = 644 {\rm GHz}\) and f\(_{\rm max} =\) 681 GHz. IEEE Electron Device Lett. 31(8), 806 (2010)

    Article  Google Scholar 

  12. Ono, H.: High frequency characteristics and saturation electron velocity of InAlAs/InGaAs metamorphic high electron mobility transistors at high temperatures. In: IEEE International Conference on Indium Phosphide & Related Materials, (IPRM), p. 280 (2004)

  13. Yeon, S.J.: 610GHz InAlAs/InGaAs metamorphic HEMTs with ultra short 15-nm gate. In: Proceedings of IEDM Techinal Digest, p. 613, (2007)

  14. Hwang, C.-J.: An ultra low power MMIC amplifier using 50nm \({\updelta }\)-doped \({\rm In}_{0.52}{\rm Al}_{0.48}{\rm As}/{\rm In}_{0.53}{\rm Ga}_{0.48}{\rm As}\) metamorphic HEMT. IEEE Electron Device Lett. 31(11), 1230 (2010)

    Article  Google Scholar 

  15. Xu, D.: Asymmetrically recessed 50-nm gate length metamorphic high electron mobility transistor with enhanced gain performance. IEEE Electron Device Lett. 29(1), 4 (2008)

    Article  Google Scholar 

  16. Xu, D.: 50-nm metamorphic high electron mobility transistors with high gain and high breakdown voltages. IEEE Electron Device Lett. 30(8), 793–795 (2009)

    Article  Google Scholar 

  17. Hoke, W.E.: High indium metamorphic HEMT on a GaAs substrate. J Cryst Growth 251(1), 827–831 (2003)

    Article  Google Scholar 

  18. Ha, W.: Enhancement mode metamorphic HEMT on GaAs substrate with 2 S/mm \({g}_{{\rm m}}\) and 490 GHz \({f}_{{\rm T}}\). IEEE Electron Device Lett. 29(5), 419–421 (2008)

    Article  Google Scholar 

  19. Zaknoune, M.: InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltages. IEEE Electron Device Lett. 19(9), 345 (1998)

    Article  Google Scholar 

  20. Chang, Y.C.: Low noise metamorphic HEMTs with reflowed 0.1- \(\upmu \)m T-gate. IEEE Electron Device Lett. 25(6), 348–350 (2004)

    Article  Google Scholar 

  21. Leuther, A.: Metamorphic 50-nm InAs channel HEMT. In: IEEE International Conference on Indium Phosphide & Related Materials, (IPRM), p. 129 (2005)

  22. Lee, K.-S.: 35 nm zigzag T-gate \({\rm In}_{0.52}{\rm Al}_{0.48}{\rm As}/{\rm In}_{0.53}{\rm Ga}_{0.47}{\rm As}\) metamorphic GaAs HEMTs with an ultra high \({f}_{{\rm max}}\) of 520 GHz. IEEE Electron Device Lett. 28(8), 672–675 (2007)

    Article  Google Scholar 

  23. Elgaid, K.: 50-nm T-gate metamorphic GaAs HEMTs with \({f}_{{\rm T}}\) of 440 GHz and noise figure of 0.7 dB at 26 GHz. IEEE Electron Device Lett. 26(11), 784–786 (2005)

    Article  Google Scholar 

  24. Leuther, A.: 70-nm Low-noise metamorphic HEMT technology on 4 Inch GaAs wafers. In: IEEE International Conference on Indium Phosphide & Related Materials, (IPRM), pp. 215–218 (2003)

  25. Kuo, C.-I.: RF performance improvement of metamorphic high electron mobility transistor using \(({\rm In}_{{\rm x}}{\rm Ga}_{1-{\rm x}}\text{ As }) {\rm m}/({\rm InAs}) {\rm n}\) superlattice-channel structure for millimeter-wave applications. IEEE Electron Device Lett. 31(7), 677 (2010)

    Article  Google Scholar 

  26. Sahoo, K.C.: Novel metamorphic HEMT with highly doped InGaAs source/drain regions for high frequency applications. IEEE Trans. Electron Device 57(10), 2594 (2010)

    Article  Google Scholar 

  27. Maher, H.: A 200 GHz true E-mode low noise MHEMT. IEEE Trans. Electron Device 54(7), 1626 (2007)

    Article  Google Scholar 

  28. Xiao Feng, W.U.: Fabrication of 150-nm \({\rm Al}_{0.48}{\rm In}_{0.52}{\rm As}/{\rm Ga}_{0.47}{\rm In}_{0.53}{\rm As}\) mHEMTs on GaAs substrates. Sci China 55(12), 2389 (2012)

    Google Scholar 

  29. Zeng, Y.: High quality metamorphic HEMT grown on GaAs substrates by MBE. J Cryst Growth 227, 210–213 (2001)

    Article  Google Scholar 

  30. Li, H.: Metamorphic AlInAs/GaInAs HEMTs on GaAs substrates by MOCVD. IEEE Electron Device Lett. 29(6), 561 (2008)

    Article  Google Scholar 

  31. Xu, D.: Gate length scaling of ultra short metamorphic high electron mobility transistors with asymmetrically recessed gate contacts for millimetre and sub-millimeter wave applications. IEEE Trans. Electron Device 58(5), 1408 (2011)

    Article  Google Scholar 

  32. Das, M.B.: A high aspect ratio design approach to millimeter-wave HEMT structures. IEEE Trans. Electron Device 32(1), 11–17 (1985)

    Article  Google Scholar 

  33. Leuther, A.: 20 nm metamorphic HEMT technology for terahertz monolithic integrated circuits. In: Proceedings of the 9th European Microwave Integrated Circuits Conference, p.84 (2014)

  34. Boudrissa, M.: Enhancement mode \({\rm Al}_{0.66}{\rm In}_{0.34} {\rm As}/{\rm Ga}_{0.67}{\rm In}_{0.33}{\rm As}\) metamorphic HEMT: modelling and measurements. IEEE Trans. Electron Device 48(6), 1037 (2001)

    Article  Google Scholar 

  35. Huang, C.C.: Comprehensive temperature dependent studies of metamorphic high electron mobility transistor with double and single \({\updelta }\)-doped structures. IEEE Trans. Electron Device 58(12), 4276 (2011)

    Article  Google Scholar 

  36. Hsu, W.-C.: Performance improvement in tensile-strained \({\rm In}_{0.5}{\rm Al}_{0.5}{\rm As}/{\rm In}_{{\rm x}} {\rm Ga}_{1-{\rm x}}{\rm As}/{\rm In}_{0.5}{\rm Al}_{0.5}{\rm As}\) metamorphic HEMT. IEEE Trans. Electron Device 53(3), 406–412 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Nirmal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajayan, J., Nirmal, D. 20-nm T-gate composite channel enhancement-mode metamorphic HEMT on GaAs substrates for future THz applications. J Comput Electron 15, 1291–1296 (2016). https://doi.org/10.1007/s10825-016-0884-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0884-4

Keywords

Navigation