Journal of Computational Electronics

, Volume 15, Issue 3, pp 831–838 | Cite as

Series and parallel resistance effects on the C–V and G–V characteristics of \(\mathrm{Al}/\mathrm{SiO}_{2}\)/Si structure

  • Omar Rejaiba
  • Alejandro F. Braña
  • Adel Matoussi


This paper investigates the electrical behavior of the C–V and G–V characteristics of \(\mathrm{Al}/\mathrm{SiO}_{2}/\mathrm{Si}\) structure. The modeling of capacitance and conductance has been developed from complex admittance treatment applied to the proposed equivalent circuit. Poisson transport equations have been used to determine the charge density, surface potential, total capacitance, and flatband and threshold voltages as a function of the gate voltage, frequency (\(\omega )\), and series \(({R}_{\mathrm{s}})\) and parallel \(({R}_{\mathrm{p}})\) resistances. Results showed a frequency dispersion of C–V and G–V curves in both accumulation and inversion regimes. With increasing frequency, the accumulation capacitance is decreased, whereas the conductance is strongly increased. The shape, dispersion, and degradation of C–V and G–V characteristics are more influenced when parallel and series resistances \((\mathrm{R}_{\mathrm{s}}\), \(\mathrm{R}_{\mathrm{p}})\) are dependent to substrate doping density. The variation of \(\mathrm{R}_{\mathrm{s}}\) and \(\mathrm{R}_{\mathrm{p}}\) values led to a reduction of flatband voltage from −1.40 to −1.26 V and increase of the threshold voltage negatively from −0.28 to −0.74 V. A good agreement has been observed between simulated and measured C–V and G–V curves obtained at high frequency.


Metal/oxide/semiconductor (MOS) Frequency Resistance Doping Conductance Capacitance 


  1. 1.
    Goldberger, J., Hochbaum, I.A., Fan, R., Yang, P.: Silicon Vertically Integrated Nanowire Field Effect Transistors. Nano. Lett. 6, 973 (2006)CrossRefGoogle Scholar
  2. 2.
    Jianjun, C., Shuming, C., Bin, L., Biwei, L., Zheng, L., Zheqian, T.: Hot carrier effects of SOI NMOS. J. Semicond. 31, 74006 (2010)CrossRefGoogle Scholar
  3. 3.
    Godoy, A., López-Villanueva, J.A., Jiménez-Tejada, J.A., Palma, A., Gámiz, F.: A simple subthreshold swing model for short channel MOSFETs. Solid. State. Electron. 45, 391 (2001)CrossRefGoogle Scholar
  4. 4.
    Schroder, D.K.: Semiconductor material and device characterization, 3rd edn. John Wiley & Sons, New York (2006)Google Scholar
  5. 5.
    Bentarzi, H.: Transport in metal-oxide-semiconductor structures. Springer-Verlag, Berlin Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Xiao, H., Huang, S.: Frequency and voltage dependency of interface states and series resistance in Al/SiO\(_{2}\)/p-Si MOS structure. Materials science in semiconductor processing 13, 395 (2010)CrossRefGoogle Scholar
  7. 7.
    Kahraman, A., Yilmaz, E., Kaya, S., Aktag, A.: Effects of post deposition annealing, interface states and series resistance on electrical characteristics of HfO\(_{2}\) MOS capacitors. J. Mater. Sci. Mater. Electron. 26, 8277 (2015)CrossRefGoogle Scholar
  8. 8.
    Baran, H.M., Tataroglu, A.: Determination of interface states and their time constant for Au/SnO\(_{2}\)/n-Si (MOS) capacitors using admittance measurements. Chin. Phys. B. 22, 047303 (2013)CrossRefGoogle Scholar
  9. 9.
    Barış, B.: Analysis of device parameters for Au/tin oxide/n-Si (1 0 0) metal-oxide-semiconductor (MOS) diodes. Phys. B. 438, 65 (2014)CrossRefGoogle Scholar
  10. 10.
    Karatas, Ş., Altındal, Ş.: Analysis of I-V characteristics on Au/n-type GaAs Schottky structures in wide temperature range. Mater. Sci. Eng. B. 122, 133 (2005)CrossRefGoogle Scholar
  11. 11.
    Karatas, Ş.: Altındal Ş, akar M. C,: Current transport in Zn/p-Si(1 0 0) Schottky barrier diodes at high temperatures. Phys. B. 357, 386 (2005)CrossRefGoogle Scholar
  12. 12.
    Yakuphanoglu, F.: Electronic and interface state density properties of Cu/n-Si MIS-type diode. Phys. B. 394, 23 (2007)CrossRefGoogle Scholar
  13. 13.
    Tataroğlu, A., Altindal, Ş., Bülbül, M.M.: Temperature and frequency dependent electrical and dielectric properties of Al/SiO\(_{2}\)/p-Si (MOS) structure. Microelectron. Eng. 81, 140 (2005)CrossRefGoogle Scholar
  14. 14.
    Bülbül, M.M., Zeyrek, S.: Frequency dependent capacitance and conductance-voltage characteristics of Al/Si\(_{3}\) N\(_{4}\)/p-Si (100) MIS diodes. Microelectron. Eng. 83, 2522 (2006)CrossRefGoogle Scholar
  15. 15.
    Chattopadhyay, P., Raychaudhuri, B.: Frequency dependence of forward capacitance-voltage characteristics of Schottky barrier diodes. Solid. State. Electron. 36(2), 605 (1993)CrossRefGoogle Scholar
  16. 16.
    Sze, S.M.: Phys. Semicond. Wiley- Inter science, New York (1969)Google Scholar
  17. 17.
    Luna-Lopez, J.A., Aceves-Mijares, M., Malik, O., Glanzer, R.: Modelling the C-V characteristics of MOS capacitor on high resistivity silicon substrate for PIN photo-detector applications. INAOE REVISTA Mexicana de Fisica s, Puebla. 52, 45 (2005)Google Scholar
  18. 18.
    Terman, L.M.: An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid. State. Electron. 5, 285 (1962)CrossRefGoogle Scholar
  19. 19.
    Luna-López, J.A., Aceves-Mijares, M., Malik, O.: Caracterización de substratos de silicio de alta y baja resistividad mediante la estructura Al/SRO/Si y comparación con técnicas utilizando estructuras MOS. Sociedad Mexicana de Ciencia de Superficies y de Vacío 17, 1 (2004)Google Scholar
  20. 20.
    Fernández-Martínez, P., Palomo, F.R., Hidalgo, S., Fleta, C., Campabadal, F., Flores, D.: Analysis of displacement damage effects on MOS capacitors. Nucl. Instr. Meth. Phys. Res A. 730, 91 (2013)CrossRefGoogle Scholar
  21. 21.
    Rong, B., Nanver, L.K., Burghartz, J.N., Jansman, A.B.M., Evans, A.G.R., Rejaeia, B.S.: C-V Characterization of MOS Capacitors on High Resistivity Silicon Substrate. in 33rd Conference on European Solid-State Device Research, IEEE, pp. 489–492. doi: 10.1109/ESSDERC.1256920 (2003)
  22. 22.
    Chen, F., Hoilien, N.P., Campbell, S.A.: A new method for extracting EOT for leaky insulators. Microelectron. Eng. 72, 160 (2004)CrossRefGoogle Scholar
  23. 23.
    Rejaiba, O., Ben Amar, M., Matoussi, A.: Effects of series and parallel resistances on the C-V characteristics of silicon-based metal oxide semiconductor (MOS) devices. Eur. Phys. J. Plus. 130, 80, 1. (2015)Google Scholar
  24. 24.
    Ullah, S.S., Robinson, M., Hoey, J., Driver, M.S., Caruso, A., Schulz, D.L.: Work function characterization of solution-processed cobalt silicide. Semicond. Sci. Technol. 27, 065012(5p)(2012)Google Scholar
  25. 25.
    Henson, W.K, Ahmed, K.Z., Vogel, E.M., Hauser, J.R., Wortman, J.J., Venables, R.D., Xu, M., Venables, D.: Estimating oxide thickness of tunnel oxides down to 1.4 nm using conventional capacitance-voltage measurements on MOS capacitors. IEEE. Electron. Device. Lett. doi: 10.1109/55.753759. 20,179(1999)
  26. 26.
    Sah, C.T., Tole, A.B., Pierret, R.F.: Error analysis of surface state density determination using the MOS capacitance method. Solid. State. Electron. 12, 689 (1969)CrossRefGoogle Scholar
  27. 27.
    Srivastava, A.K., Fretwurst, E., Klanner, R.: Simulation of MOS Capacitor for C-V\(_{g}\) Characterization, Internal note (within AGIPD collaboration)Google Scholar
  28. 28.
    Srivastava, A.K., Fretwurst, E., Klanner, R., Perrey, H.: Numerical Modelling of the Frequency Behaviour of Irradiated MOS Test Structure Internal note (within AGIPD collaboration). (
  29. 29.
    Mahajan, A.M., Khairnar, A.G., Thibeaul, B.J.: Pt-Ti/ALD-Al2O3/p-Si MOS capacitors for future ULSI technology. J. Nano. Electron. Phys. 3, 647 (2011)Google Scholar
  30. 30.
    Birkan Selçuk, A., Tuğluoğlu, N., Karadeniz, S., Bilge Ocak, S.: Analysis of frequency-dependent series resistance and interface states of In/SiO2/p-Si (MIS) structures. Phys. B. 400, 149 (2007)CrossRefGoogle Scholar
  31. 31.
    Korucu, D., Turut, A., Turan, R., Altindal, Ş.: On the profile of frequency dependent interface states and series resistance in Au/p-InP SBDs prepared with photolithography technique. Sci. China Phys. Mechan. Astron. 55, 1604 (2012)CrossRefGoogle Scholar
  32. 32.
    Tataroğlu, A., Altindal, Ş.: Characterization of current-voltage (I-V) and capacitance-voltage-frequency (C-V-f) features of Al/SiO2/p-Si (MIS) Schottky diodes. Microelectron. Eng. 83, 582 (2006)CrossRefGoogle Scholar
  33. 33.
    Raychaudhuri, B., Chattopadhyay, P.: Effect of energy distribution of interface states on the capacitance and conductance of Schottky barrier and MIS tunnel contacts. Phys. Stat. Sol. (a). 141, 7 (1994)CrossRefGoogle Scholar
  34. 34.
    Parlaktürk, F., Altındal, Ş., Tataroğlu, A., Parlak, M., Agasiev, A.: On the profile of frequency dependent series resistance and surface states in Au/Bi\(_{4}\)Ti\(_{3}\)O\(_{12}\)/SiO\(_{2}\)/n-Si (MFIS) structures. Microelectron. Eng. 85, 81 (2008)CrossRefGoogle Scholar
  35. 35.
    Tataroğlu, A., Altindal, Ş.: Study on the frequency dependence of electrical and dielectric characteristics of Au/SnO\(_{2}\)/n-Si (MIS) structures. Microelectron. Eng. 85, 1866 (2008)CrossRefGoogle Scholar
  36. 36.
    Konofaos, N., Evangelou, E,K., Aslanoglou, X., Kokkoris, M., Vlastou, R.: Dielectric properties of CVD grown SiON thin films on Si for MOS microelectronic devices. Semicond. Sci. Technol. 19, 50 (2004)CrossRefGoogle Scholar
  37. 37.
    Kwa, K.S.K., Chattopadhyay, S., Jankovic, N.D., Olsen, S.H., Driscolland, L.S.: O’Neill. A.G.: A model for capacitance reconstruction from measured lossy MOS capacitance-voltage characteristics. Semicond. Sci. Technol. 18, 82 (2003)CrossRefGoogle Scholar
  38. 38.
    Hofstein, S.R., Warfield, G.: Physical limitations on the frequency response of a semiconductor surface inversion layer. Solid. State. Electron. 8, 321 (1965)CrossRefGoogle Scholar
  39. 39.
    Nicollian, E.H., Brews, J.R.: MOS Physics and Technology. Willey Inter science Publication, USA (1982)Google Scholar
  40. 40.
    Mathieu, H.: Physique de semi-conducteurs et des composantes électroniques. Masson S.A, Paris (1998)Google Scholar
  41. 41.
    Yıldız, D.E., Dökme, İ.: Frequency and gate voltage effects on the dielectric properties and electrical conductivity of Al/SiO\(_{2}\)/p-Si metal-insulator-semiconductor Schottky diodes. J. Appl. Phys. 110, 014507(5) (2011)Google Scholar
  42. 42.
    Arsel, İ.: On the profile of frequency dependent series resistance and interface states in Al/TiO\(_{2}\)/p-Si (MIS) Structures. Batman University. J. Life. Sci. 2, 29 (2012)Google Scholar
  43. 43.
    Therrien, R., Lucovsky, G., Davis, R.: Charge redistribution at GaN-G2O3 interfaces: a microscopic mechanism for low defect density interfaces in remote-plasma-processed MOS devices prepared on polar GaN faces. Appl. Surf. Sci. 166, 513 (2000)CrossRefGoogle Scholar
  44. 44.
    Abdullah, K.A., Abdullah, M.J., Yam, F.K., Hassan, Z.: Electrical characteristics of GaN-based metal-oxide-semiconductor (MOS) structures. Microelectron. Eng. 81, 201 (2005)CrossRefGoogle Scholar
  45. 45.
    Casey Jr., H.C., Fountain, G.G., Alley, R.G., Keller, B.P., Denbaars, S.P.: Low interface trap density for remote plasma deposited SiO\(_{2}\) on n-type GaN. Appl. Phys. Lett. 68, 1850 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Omar Rejaiba
    • 1
  • Alejandro F. Braña
    • 2
  • Adel Matoussi
    • 1
  1. 1.Laboratory of Composite Ceramic and Polymer Materials (LaMaCoP)Sfax Faculty of ScienceSfaxTunisia
  2. 2.Grupo de Electronica y Semiconductores, Departamento de Fısica AplicadaUniversidad Autonoma de MadridMadridSpain

Personalised recommendations