Journal of Computational Electronics

, Volume 15, Issue 2, pp 569–576 | Cite as

Control of gold nano-domes to design an all-optical switch by simultaneously binary and continuous operated optimization



This paper presents an efficient evolutionary method to optimize an array of plasmonic nano-domes in order to design an optical switch. In the proposed switch, the optical switch has been excited by two monochromatic incident plan-waves with the same frequency and two polar angles “\(\uptheta =0\)” and “\(\uptheta =\uppi /2\)”. When only the signal with \(\uptheta =0\) is applied, the incident wave is transmitted and when both signals are applied to the switch simultaneously, coherent perfect absorption (CPA) occurs and the two incident waves are suppressed. Therefore, the signal with \(\uptheta =\uppi /2\) acts as control signal. Since the CPA efficiency depends strongly on the number of plasmonic nano-domes, on their location and geometric characterization, a new efficient optimization method named “fuzzy adaptive modified particle swarm optimization” (FAMPSO) is proposed to design an optimized array of the plasmonic nano-domes in order to achieve the maximum absorption coefficient in the off-state and the minimum absorption coefficient in the on-state. In the FAMPSO algorithm a group of birds controlling the presence (‘1’) or the absence (‘0’) and geometric characterization of nano domes in the array.


Plasmonic switch Plasmonic nano particles  Optimization algorithm 


  1. 1.
    Gibbs, H.M.: Optical Bistability: Controlling Light with Light. Academic, Orlando, FL (1985)Google Scholar
  2. 2.
    Yariv, Amnon: Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technol. Lett. 14(4), 483–485 (2002)CrossRefGoogle Scholar
  3. 3.
    Reed, Graham T., et al.: Silicon optical modulators. Nat. Photonics 4(8), 518–526 (2010)CrossRefGoogle Scholar
  4. 4.
    Ikuma, Yuichiro, et al.: Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide. Electron. Lett. 46(5), 368–369 (2010)CrossRefGoogle Scholar
  5. 5.
    Huang, Yu., et al.: Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504), 630–633 (2001)CrossRefGoogle Scholar
  6. 6.
    Law, Matt, et al.: Nanoribbon waveguides for subwavelength photonics integration. Science 305(5688), 1269–1273 (2004)CrossRefGoogle Scholar
  7. 7.
    Gill, Ron, et al.: Electrochemical control of the photocurrent direction in intercalated DNA/CdS nanoparticle systems. Angew. Chem. Int. Ed. 44(29), 4554–4557 (2005)CrossRefGoogle Scholar
  8. 8.
    Giannini, Vincenzo, et al.: Controlling light localization and light-matter interactions with nanoplasmonics. Small 6(22), 2498–2507 (2010)CrossRefGoogle Scholar
  9. 9.
    Gramotnev, Dmitri K., Bozhevolnyi, Sergey I.: Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83–91 (2010)CrossRefGoogle Scholar
  10. 10.
    Akhlaghi, Majid, et al.: Simulation and optimization of nonperiodic plasmonic nano-particles. J. Opt. Soc. Korea 18(1), 82–88 (2014)CrossRefGoogle Scholar
  11. 11.
    Noh, Heeso, et al.: Perfect coupling of light to surface plasmons by coherent absorption. Phys. Rev. Lett. 108(18), 186805 (2012)CrossRefGoogle Scholar
  12. 12.
    Chong, Y.D., et al.: Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105(5), 053901 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wan, Wenjie, et al.: Time-reversed lasing and interferometric control of absorption. Science 331(6019), 889–892 (2011)CrossRefGoogle Scholar
  14. 14.
    Akhlaghi, M., Keshavarz, R., Emami, F.: Binary control of plasmonic nano rods to design an optical switch. Opt. Quantum Electron. (2015). doi: 10.1007/s11082-015-0195-1
  15. 15.
    Chen, Jianjun, et al.: Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit. Nano Lett. 11(7), 2933–2937 (2011)CrossRefGoogle Scholar
  16. 16.
    Loke, L.Y., Mengüç, M.P., Nieminen, T.A.: Discrete-dipole approximation with surface interaction: computational toolbox for MATLAB. J. Quant. Spectrosc. Radiat. Transf. 112(11), 1711–1725 (2011)CrossRefGoogle Scholar
  17. 17.
    Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wily, New York (1998)Google Scholar
  18. 18.
    Becker, J., Trügler, A., Jakab, A.: The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5, 161–167 (2010)CrossRefGoogle Scholar
  19. 19.
    Loke, Vincent L.Y., Pinar Mengüç, M.: Surface waves and atomic force microscope probe-particle near-field coupling: discrete dipole approximation with surface interaction. JOSA A 27(10), 2293–2303 (2010)CrossRefGoogle Scholar
  20. 20.
    Le Ru, E.C., Etchegoin, P.G.: Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects, 1st edn. Elsevier, Amsterdam (2008)Google Scholar
  21. 21.
    Clerc, Maurice, Kennedy, James: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  22. 22.
    Akhlaghi, Majid, Emami, Farzin: Fuzzy adaptive modified PSO-algorithm assisted to design of photonic crystal fiber Raman amplifier. J. Opt. Soc. Korea 17(3), 237–241 (2013)CrossRefGoogle Scholar
  23. 23.
    Niknam, T., Mojarrad, H., Nayeripour, M.: A new fuzzy adaptive particle swarm optimization for non-convex economic dispatch. Int. J. Innov. Comput. Inf. Control 7, 1764–1778 (2011)Google Scholar
  24. 24.
    Niknam, Taher, Mojarrad, Hasan Doagou, Meymand, Hamed Zeinoddini: A novel hybrid particle swarm optimization for economic dispatch with valve-point loading effects. Energy Convers. Manag. 52(4), 1800–1809 (2011)CrossRefGoogle Scholar
  25. 25.
    Bajpai, P., Singh, S.N.: Fuzzy adaptive particle swarm optimization for bidding strategy in uniform price spot market. IEEE Trans. Power Syst. 22(4), 2152–2160 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Omidieh BranchIslamic Azad UniversityOmidiehIran

Personalised recommendations