Journal of Computational Electronics

, Volume 15, Issue 2, pp 381–388 | Cite as

Hydrogen sensitive field-effect transistor based on germanene nanoribbon and optical properties of hydrogenated germanene

  • Amir Hossein Bayani
  • Daryoosh Dideban
  • Negin Moezi


Physisorption of hydrogen molecules on armchair germanene nanoribbon (GeNR) is studied with density functional methods. The adsorption geometries, adsorption energies and transferred charge are obtained. To take the Van der Waals forces into account, the Grimme correction is added to the calculation method. The physisorption effect on the electrical properties of the ribbon is explored as a function of \(\hbox {H}_{2}\) concentration through the Green’s function techniques. Sensing features of the GeNR are investigated as a channel of a back gated field effect transistor. The optical properties of the nanoribbon are obtained for parallel and perpendicular polarizations. The results point out that, the germanene is a suitable substrate for \(\hbox {H}_{2}\) encapsulation. Moreover, \(\hbox {H}_{2}\) physisorption can improve the I–V characteristics and suppress the optical spectrum of the GeNR. The current through the nanoribbon increases by increasing \(\hbox {H}_{2}\) concentration at the same bias voltage. Also, the germanene back gated FET improve the sensing properties. The results show that the GeNR dielectric function is anisotropic and the GeNR becomes more transparent by increasing \(\hbox {H}_{2}\) density. Finally, by applying the spin-orbit coupling (SOC) effect, the obtained results are re-calculated and the changes in the results are studied. The SOC opens up the electronic band gap of the GeNR about 20 meV and increases the current slightly through the GeNR.


Hydrogen molecules physisorption  Germanene nanoribbon  Electronic properties Back gated field-effect transistor  Optical properties Spin-orbit coupling effect 


  1. 1.
    Wang, Y., Yeow, J.T.W.: A review of carbon nanotubes-based gas sensors. J. Sens. 2009, Article ID 493904 (2009)Google Scholar
  2. 2.
    Guzmn-Verri, G.G., Voon, L.C.L.Y.: Electronic structure of silicon-based nanostructures. Phys. Rev. B 76, 075131 (2007)CrossRefGoogle Scholar
  3. 3.
    Lebègue, S., Eriksson, O.: Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009)CrossRefGoogle Scholar
  4. 4.
    Brumfiel, G.: Sticky problem snares wonder material. Nature 495, 153 (2013)Google Scholar
  5. 5.
    Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., Le Lay, G.: Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys. Rev. Lett. 108, 15550 (2012)Google Scholar
  6. 6.
    Fleurence, A., Friedlein, R., Osaki, T., Kawai, H., Wang, Y., Yamada-Takamura, Y.: Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 245501 (2012)CrossRefGoogle Scholar
  7. 7.
    Cahangirov, S., Topsakal, M., Akturk, E., Sahin, H., Ciraci, S.: Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)CrossRefGoogle Scholar
  8. 8.
    Takeda, K., Shiraishi, K.: Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 50, 14916 (1994)CrossRefGoogle Scholar
  9. 9.
    Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., Le Lay, G.: Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012)CrossRefGoogle Scholar
  10. 10.
    Bianco, E., Butler, S., Jiang, S., Restrepo, O.D., Windl, W., Goldberger, J.E.: Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano 7, 4414–4421 (2013)CrossRefGoogle Scholar
  11. 11.
    Acun, A., Zhang, L., Bampoulis, P., Farmanbar, M., Van Houselt, A., Rudenko, A.N., Lingenfelder, M., Brocks, G., Poelsema, B., Katsnelson, M.I., Zandvliet, H.J.W.: Germanene: the germanium analogue of graphene. J. Phys.: Condens. Matter 27, 443002 (2015)Google Scholar
  12. 12.
    Nijamudheen, A., Bhattacharjee, R., Choudhury, S., Datta, A.: Electronic and chemical properties of germanene: the crucial role of buckling. J. Phys. Chem. C 119(7), 3802–3809 (2015)CrossRefGoogle Scholar
  13. 13.
    Liu, C.-C., Feng, W., Yao, Y.: Quantum Spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)CrossRefGoogle Scholar
  14. 14.
    Liu, C.C., Jiang, H., Yao, Y.: Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 195430 (2011)CrossRefGoogle Scholar
  15. 15.
    Matthes, L., Pulci, O., Bechstedt, F.: Massive Dirac quasi-particles in the optical absorbance of graphene, silicene, germanene, and tinene. J. Phys.: Condens. Matter 25, 395305 (2013)Google Scholar
  16. 16.
    Kaloni, T.P., Modarresi, M., Tahir, M., Rezaee Roknabadi, M., Schreckenbach, G., Freund, M.S.: Electrically engineered band gap in two-dimensional Ge, Sn, and Pb: a first-principles and tight-binding approach. J. Phys. Chem. C 119(21), 11896–11902 (2015)CrossRefGoogle Scholar
  17. 17.
    Liu, H., Gao, J., Zhao, J.: Silicene on substrates: a way to preserve or tune its electronic properties. J. Phys. Chem. C 117, 10353–10359 (2013)CrossRefGoogle Scholar
  18. 18.
    Dell’Angela, M., et al.: Relating energy level alignment and amine-linked single molecule junction conductance. Nano Lett. 10, 2470–2474 (2010)CrossRefGoogle Scholar
  19. 19.
    Venkataraman, L., Klare, J.E., Tam, I.W., Nuckolls, C., Hybertsen, M.S., Steigerwald, M.L.: Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006)CrossRefGoogle Scholar
  20. 20.
    Mowbray, D.J., Jones, G., Thygesen, K.S.: Influence of functional groups on charge transport in molecular junctions. J. Chem. Phys. 128, 111103 (2008)CrossRefGoogle Scholar
  21. 21.
    Zhao, J., et al.: Gas molecule adsorption in carbon nanotubes. Nanotechnology 13, 195 (2002)CrossRefGoogle Scholar
  22. 22.
    Matthes, L., Pulci, O., Bechstedt, F.: Optical properties of two-dimensional honeycomb crystals graphene, silicene, germanene, and tinene from first principles. N. J. Phys. 16, 105007 (2014)CrossRefGoogle Scholar
  23. 23.
    Perdew, J.P., Burke, K., Wang, Y.: Generalized gradient approximation for the exchange-correlation hole of a many electron system. Phys. Rev. B 54, 16533–16539 (1996)CrossRefGoogle Scholar
  24. 24.
    Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992)CrossRefGoogle Scholar
  25. 25.
    Troullier, N., Martins, J.L.: Efficient pseudopotentials for planewave calculations. Phys. Rev. B 43, 1993–2006 (1991)CrossRefGoogle Scholar
  26. 26.
    Giannozzi, P., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502–19 (2009)Google Scholar
  27. 27.
    Grimme, S.: Semi-empirical GGA-type density functional constructed with a long-range dispersion correlation. J. Comput. Chem. 27, 1787 (2006)CrossRefGoogle Scholar
  28. 28.
    Barone, V., et al.: Role and effective treatment of dispersive forces in materials: polyethylene and graphite crystals as test cases. J. Comput. Chem. 30, 934 (2009)CrossRefGoogle Scholar
  29. 29.
    Soler, J.M., Artacho, E., Gale, J.D., Garcıa, A., Junquera, J., Ordejon, P., Portal, D.S.: The SIESTA method for ab initio order N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002)CrossRefGoogle Scholar
  30. 30.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Löwdin, P.-O.: Quantum theory of many-particle systems. I. Physical Interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97, 1474 (1955)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J., Stokbro, K.: Density functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)CrossRefGoogle Scholar
  33. 33.
    Heyd, J.G., Scuseria, E., Ernzerhof, M.J.: Hybrid functionals based on a screened Coulomb potential. Chem. Phys. 118, 8207–8215 (2003)Google Scholar
  34. 34.
    Heyd, J.G., Scuseria, E., Ernzerhof, M.J.: Erratum. Hybrid functionals based on a screened Coulomb potential. Chem. Phys. 124, 219906 (2006)Google Scholar
  35. 35.
    Tsai, W., Huang, C., Chang, T., Lin, H., Jeng, H., Bansil, A.: Gated silicene as a tunable source of nearly 100% spin-polarized. Electrons. Nat. Commun. 4, 1500 (2013)CrossRefGoogle Scholar
  36. 36.
    Ambrosch-Draxl, C., Sofo, J.O.: Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput. Phys. Commun. 175, 1–14 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  2. 2.Department of Electrical and Computer EngineeringUniversity of KashanKashanIran
  3. 3.Technical and Vocational UniversityKashanIran

Personalised recommendations