Journal of Computational Electronics

, Volume 15, Issue 2, pp 358–366 | Cite as

Performance analysis of multilayer graphene nanoribbon (MLGNR) interconnects

  • Mayank Kumar Rai
  • Ashoke Kumar Chatterjee
  • Sankar Sarkar
  • B. K. Kaushik


This paper addresses the impact of interlayer resistance due to c-axis resistivity and contact resistance on performance in terms of delay, power dissipation and power delay product (PDP) of Multi-layer graphene nanoribbon (MLGNR) interconnect. The impact of model parameter i.e. Fermi energy \((\hbox {E}_\mathrm{F})\) on performance of MLGNR is also discussed. A similar analysis is performed for copper interconnect and results are compared with MLGNR at 22 nm technology node. The impact of interlayer resistance on equivalent resistance of MLGNR is critically analyzed. Inductive and capacitive coupling between the adjacent layers are included in this analysis. It is found that the MLGNR with interlayer resistance, compared to copper, gives better performance in terms of delay, power dissipation and PDP with higher value of Fermi energy for semi global to global lengths of interconnect (300–1000 \(\upmu \hbox {m})\) whereas reverse is true for local lengths 100–200 \((\upmu \hbox {m})\). In addition, performance gap between MLGNR with and without interlayer resistance decreases with increase in Fermi energy.


Multi-layer graphene nanoribbon (MLGNR) Delay Power dissipation Interconnects PDP 


  1. 1.
    Davis, J.A., Meindlm, J.D.: Interconnect Technology and Design for Gigascale Integration. Springer, London (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Kreupl, F., Graham, A.P., Duesberg, G.S., Steinhogl, W., Liebau, M., Unger, E., Hönlein, W.: Carbon nanotubes in interconnect applications. Microelectron. Eng. 64, 399–408 (2002)CrossRefGoogle Scholar
  3. 3.
    Srivastava, N., Banerjee, K.: Performance analysis of carbon nanotubes interconnects for VLSI applications. In: Proceedings IEEE/ACM International Conference on ICCAD, pp. 383–390 (2005)Google Scholar
  4. 4.
    Rai, M.K., Sarkar, S.: Influence of tube diameter on carbon nanotube interconnect delay and power output. Phys. Status Solidi A 208, 3,735–3,739 (2011)CrossRefGoogle Scholar
  5. 5.
    Rai, M.K., Sarkar, S.: Influence of distance between adjacent tubes on SWCNT bundle interconnect delay and power dissipation. J. Comput. Electron. 12(4), 796–802 (2013)CrossRefGoogle Scholar
  6. 6.
    Hong, L., Yin, W.-Y., Banerjee, K., Mao, J.-F.: Circuit modeling and performance analysis of multiwalled carbon nanotube interconnects. IEEE Trans. Electron Devices 55(6), 1328–1337 (2008)CrossRefGoogle Scholar
  7. 7.
    Naeemi, A., Meindl, J.D.: Performance benchmarking for grapheme nanoribbon, carbon nanotube, and Cu interconnects. In: Proceedings of IEEE International Interconnect Technology Conference, San Fracisco, CA, pp. 183–185 (2008)Google Scholar
  8. 8.
    Geim, A.K., Novoselov, K.S.: The rise of grapheme. Nat. Mater. 6(3), 183–191 (2007)CrossRefGoogle Scholar
  9. 9.
    Rakheja, S., Kumar, V., Naeemi, A.: Evaluation of the potential performance of graphene nanoribbons as on-chip interconnects. Proc. IEEE 101, 7 (2013)CrossRefGoogle Scholar
  10. 10.
    Srivastava, N., Banerjee, K.: Interconnect challenges for nanoscale electronic circuits. TMS J. Mater. 56(10), 30–31 (2004)Google Scholar
  11. 11.
    Hone, J., Whitney, M., Piskoti, C., Zettl, A.: Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B Condens. Matter 59(4), R2514–R2516 (1999)CrossRefGoogle Scholar
  12. 12.
    Kim, P., Shi, L., Majumdar, A., McEuen, P.L.: Thermal transport measurements of individual multiwalled carbon nanotubes. Phys. Rev. Lett. 87(21), 215502 (2001)CrossRefGoogle Scholar
  13. 13.
    Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Tewldebrham, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer grapheme. Nano Lett. 8(3), 902–907 (2008)CrossRefGoogle Scholar
  14. 14.
    Chuan, X., Hong, L., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Devices 56, 1567–1578 (2009)CrossRefGoogle Scholar
  15. 15.
    Li, H., et al.: Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects. IEEE Trans. Electron Devices 56(9), 1799–1821 (2009)Google Scholar
  16. 16.
    Kumar, V., Rakheja, S., Naeemi, A.: Performance and energy per-bit modeling of multilayer graphene nanoribbon conductors. IEEE Trans. Electron Devices 59(10), 2753–2761 (2012)CrossRefGoogle Scholar
  17. 17.
    Nishad, A.K., Sharma, R.: Analytical time-domain models for performance optimization of multilayer gnr interconnects. In: IEEE Journal of Selected Topics in Quantum Electronics, vol. 201 (2014). doi: 10.1109/JSTQE.2013.2272458
  18. 18.
    Cui, J.-P., Zhao, W.-S., Yin, W.-Y., Hu, 1.: Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 53(4), 126–132 (2011)Google Scholar
  19. 19.
    Nasiri, S.H., Farshi, M.K.M., Faez, R.: Stability analysis in graphene nanoribbon interconnects. IEEE Electron. Device Lett. 31(12), 1458–1460 (2010)CrossRefGoogle Scholar
  20. 20.
    Xu, C., Li, H., Banerjee, K.: Graphene nano-ribbon (GNR) interconnects: a genuine contender or a delusive dream? In: IEDM Technical Digest, pp. 201–204 (2008)Google Scholar
  21. 21.
    Fang, Y., Zhao, W.S., Wang, X., Jiang, F., Yin, W.Y.: Circuit modelling of multilayer graphene nanoribbon (MLGNR) interconnects. In: Asia-Pacific Electromagnetic Compatibility, pp. 625–628 (2012)Google Scholar
  22. 22.
    Naeemi, A., Meindl, J.D.: Conductance modeling for graphene nanoribbon (GNR) interconnects. IEEE Electron Device Lett. 28(5), 428–431 (2007)CrossRefGoogle Scholar
  23. 23.
    Das, D., Rahaman, H.: Crosstalk and gate oxide reliability analysis in graphene nanoribbon interconnects. In: International Symposium on Electronic System Design (ISED), pp. 182–187 (2011)Google Scholar
  24. 24.
    Kumar, V., Rakheja, S., Naeemi, A.: Modeling and optimization for multi-layer graphene nanoribbon conductors. In: Proceedings of IEEE Interconnect Technology Conference, pp. 1–3 (2011)Google Scholar
  25. 25.
    Kempa, H., Esquinazi, P.: Field-induced metal-insulator transition in the c-axis resistivity of graphite. Phys. Rev. B 65, 241101-1–241101-4 (2002)CrossRefGoogle Scholar
  26. 26.
    Naeemi, A., Meindl, J.D.: Impact of electron-phonon scattering on the performance of carbon nanotube interconnects for GSI. IEEE Electron Device Lett. 26(7), 476–478 (2005)CrossRefGoogle Scholar
  27. 27.
    Park, J.Y., Rosenblatt, S., Yaish, Y., Sazonova, V., Ustunel, H., Braig, S., Arias, T.A., Brouwer, P.W., McEuen, P.L.: Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4(3), 517–520 (2004)CrossRefGoogle Scholar
  28. 28.
    International Technology Roadmap for Semiconductors (ITRS) reports. [Online]. (2011)
  29. 29.
    Predictive Technology Model. [Online]. (2008)
  30. 30.
    Wong, S.-C., Lee, G.-Y., Ma, D.-J.: Modeling of interconnect capacitance, delay, and crosstalk in VLSI. IEEE Trans. Semicond. Manuf. 13(1), 108–111 (2000)CrossRefGoogle Scholar
  31. 31.
    Dhiman, R., Chandel, R.: Design challenges in subthreshold Interconnect circuits 2015. In: Springer for Compact Models and Performance Investigations for Subthreshold Interconnects: XIII, 113 p. 45 illus., ISBN: 978-81-322-2131-9Google Scholar
  32. 32.
    Shin, Y., Kim, K.O.: Analysis of power consumption in VLSI global interconnects. In: IEEE International Symposium on Circuit and Systems, vol. 5, pp. 4713–4716 (2005). doi: 10.1109/ISCAS.2005.1465685
  33. 33.
    Rai, M.K., Spandana, G., Nivedita, Sarkar, S.: Power dissipation in SWCNT-interconnect. In: 4th International IEEE Conference on Computer and Devices for Communication, pp. 1–4 (2009)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mayank Kumar Rai
    • 1
  • Ashoke Kumar Chatterjee
    • 1
  • Sankar Sarkar
    • 2
  • B. K. Kaushik
    • 2
  1. 1.Department of Electronics and Communication EngineeringThapar UniversityPatialaIndia
  2. 2.Department of Electronics and Communication EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations