Skip to main content

Advertisement

Log in

Performance analysis of multilayer graphene nanoribbon (MLGNR) interconnects

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper addresses the impact of interlayer resistance due to c-axis resistivity and contact resistance on performance in terms of delay, power dissipation and power delay product (PDP) of Multi-layer graphene nanoribbon (MLGNR) interconnect. The impact of model parameter i.e. Fermi energy \((\hbox {E}_\mathrm{F})\) on performance of MLGNR is also discussed. A similar analysis is performed for copper interconnect and results are compared with MLGNR at 22 nm technology node. The impact of interlayer resistance on equivalent resistance of MLGNR is critically analyzed. Inductive and capacitive coupling between the adjacent layers are included in this analysis. It is found that the MLGNR with interlayer resistance, compared to copper, gives better performance in terms of delay, power dissipation and PDP with higher value of Fermi energy for semi global to global lengths of interconnect (300–1000 \(\upmu \hbox {m})\) whereas reverse is true for local lengths 100–200 \((\upmu \hbox {m})\). In addition, performance gap between MLGNR with and without interlayer resistance decreases with increase in Fermi energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Davis, J.A., Meindlm, J.D.: Interconnect Technology and Design for Gigascale Integration. Springer, London (2003)

    Book  MATH  Google Scholar 

  2. Kreupl, F., Graham, A.P., Duesberg, G.S., Steinhogl, W., Liebau, M., Unger, E., Hönlein, W.: Carbon nanotubes in interconnect applications. Microelectron. Eng. 64, 399–408 (2002)

    Article  Google Scholar 

  3. Srivastava, N., Banerjee, K.: Performance analysis of carbon nanotubes interconnects for VLSI applications. In: Proceedings IEEE/ACM International Conference on ICCAD, pp. 383–390 (2005)

  4. Rai, M.K., Sarkar, S.: Influence of tube diameter on carbon nanotube interconnect delay and power output. Phys. Status Solidi A 208, 3,735–3,739 (2011)

    Article  Google Scholar 

  5. Rai, M.K., Sarkar, S.: Influence of distance between adjacent tubes on SWCNT bundle interconnect delay and power dissipation. J. Comput. Electron. 12(4), 796–802 (2013)

    Article  Google Scholar 

  6. Hong, L., Yin, W.-Y., Banerjee, K., Mao, J.-F.: Circuit modeling and performance analysis of multiwalled carbon nanotube interconnects. IEEE Trans. Electron Devices 55(6), 1328–1337 (2008)

    Article  Google Scholar 

  7. Naeemi, A., Meindl, J.D.: Performance benchmarking for grapheme nanoribbon, carbon nanotube, and Cu interconnects. In: Proceedings of IEEE International Interconnect Technology Conference, San Fracisco, CA, pp. 183–185 (2008)

  8. Geim, A.K., Novoselov, K.S.: The rise of grapheme. Nat. Mater. 6(3), 183–191 (2007)

    Article  Google Scholar 

  9. Rakheja, S., Kumar, V., Naeemi, A.: Evaluation of the potential performance of graphene nanoribbons as on-chip interconnects. Proc. IEEE 101, 7 (2013)

    Article  Google Scholar 

  10. Srivastava, N., Banerjee, K.: Interconnect challenges for nanoscale electronic circuits. TMS J. Mater. 56(10), 30–31 (2004)

    Google Scholar 

  11. Hone, J., Whitney, M., Piskoti, C., Zettl, A.: Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B Condens. Matter 59(4), R2514–R2516 (1999)

    Article  Google Scholar 

  12. Kim, P., Shi, L., Majumdar, A., McEuen, P.L.: Thermal transport measurements of individual multiwalled carbon nanotubes. Phys. Rev. Lett. 87(21), 215502 (2001)

    Article  Google Scholar 

  13. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Tewldebrham, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer grapheme. Nano Lett. 8(3), 902–907 (2008)

    Article  Google Scholar 

  14. Chuan, X., Hong, L., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Devices 56, 1567–1578 (2009)

    Article  Google Scholar 

  15. Li, H., et al.: Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects. IEEE Trans. Electron Devices 56(9), 1799–1821 (2009)

  16. Kumar, V., Rakheja, S., Naeemi, A.: Performance and energy per-bit modeling of multilayer graphene nanoribbon conductors. IEEE Trans. Electron Devices 59(10), 2753–2761 (2012)

    Article  Google Scholar 

  17. Nishad, A.K., Sharma, R.: Analytical time-domain models for performance optimization of multilayer gnr interconnects. In: IEEE Journal of Selected Topics in Quantum Electronics, vol. 201 (2014). doi:10.1109/JSTQE.2013.2272458

  18. Cui, J.-P., Zhao, W.-S., Yin, W.-Y., Hu, 1.: Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 53(4), 126–132 (2011)

    Google Scholar 

  19. Nasiri, S.H., Farshi, M.K.M., Faez, R.: Stability analysis in graphene nanoribbon interconnects. IEEE Electron. Device Lett. 31(12), 1458–1460 (2010)

    Article  Google Scholar 

  20. Xu, C., Li, H., Banerjee, K.: Graphene nano-ribbon (GNR) interconnects: a genuine contender or a delusive dream? In: IEDM Technical Digest, pp. 201–204 (2008)

  21. Fang, Y., Zhao, W.S., Wang, X., Jiang, F., Yin, W.Y.: Circuit modelling of multilayer graphene nanoribbon (MLGNR) interconnects. In: Asia-Pacific Electromagnetic Compatibility, pp. 625–628 (2012)

  22. Naeemi, A., Meindl, J.D.: Conductance modeling for graphene nanoribbon (GNR) interconnects. IEEE Electron Device Lett. 28(5), 428–431 (2007)

    Article  Google Scholar 

  23. Das, D., Rahaman, H.: Crosstalk and gate oxide reliability analysis in graphene nanoribbon interconnects. In: International Symposium on Electronic System Design (ISED), pp. 182–187 (2011)

  24. Kumar, V., Rakheja, S., Naeemi, A.: Modeling and optimization for multi-layer graphene nanoribbon conductors. In: Proceedings of IEEE Interconnect Technology Conference, pp. 1–3 (2011)

  25. Kempa, H., Esquinazi, P.: Field-induced metal-insulator transition in the c-axis resistivity of graphite. Phys. Rev. B 65, 241101-1–241101-4 (2002)

    Article  Google Scholar 

  26. Naeemi, A., Meindl, J.D.: Impact of electron-phonon scattering on the performance of carbon nanotube interconnects for GSI. IEEE Electron Device Lett. 26(7), 476–478 (2005)

    Article  Google Scholar 

  27. Park, J.Y., Rosenblatt, S., Yaish, Y., Sazonova, V., Ustunel, H., Braig, S., Arias, T.A., Brouwer, P.W., McEuen, P.L.: Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4(3), 517–520 (2004)

    Article  Google Scholar 

  28. International Technology Roadmap for Semiconductors (ITRS) reports. [Online]. http://www.itrs.net/ (2011)

  29. Predictive Technology Model. [Online]. http://ptm.asu.edu/ (2008)

  30. Wong, S.-C., Lee, G.-Y., Ma, D.-J.: Modeling of interconnect capacitance, delay, and crosstalk in VLSI. IEEE Trans. Semicond. Manuf. 13(1), 108–111 (2000)

    Article  Google Scholar 

  31. Dhiman, R., Chandel, R.: Design challenges in subthreshold Interconnect circuits 2015. In: Springer for Compact Models and Performance Investigations for Subthreshold Interconnects: XIII, 113 p. 45 illus., ISBN: 978-81-322-2131-9

  32. Shin, Y., Kim, K.O.: Analysis of power consumption in VLSI global interconnects. In: IEEE International Symposium on Circuit and Systems, vol. 5, pp. 4713–4716 (2005). doi:10.1109/ISCAS.2005.1465685

  33. Rai, M.K., Spandana, G., Nivedita, Sarkar, S.: Power dissipation in SWCNT-interconnect. In: 4th International IEEE Conference on Computer and Devices for Communication, pp. 1–4 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Kumar Rai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, M.K., Chatterjee, A.K., Sarkar, S. et al. Performance analysis of multilayer graphene nanoribbon (MLGNR) interconnects. J Comput Electron 15, 358–366 (2016). https://doi.org/10.1007/s10825-015-0786-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0786-x

Keywords

Navigation