Journal of Computational Electronics

, Volume 15, Issue 1, pp 138–143 | Cite as

Silicene field effect transistor with high on/off current ratio and good current saturation

  • Mehran Vali
  • Daryoosh Dideban
  • Negin Moezi


We investigate theoretically the possibility of exploiting the electrically tunable band gap property of silicene to achieve field effect transistor with improved characteristics. We find that the silicene field effect transistor where a band gap is introduced through a perpendicular electric field shows a subthreshold swing smaller than 60 mV/decade and a switching effect with high on/off current ratio exceeding \(10^{5}\). We find also that the device output characteristic displays a very good saturation due to improved pinch-off of the channel, stemming from the electrically induced band gap.


Silicene field effect transistor Electrically induced gap Current saturation Transconductance 


  1. 1.
    Yamakage, A., Ezawa, M., Tanaka, Y., Nagaosa, N.: Charge transport in pn and npn junctions of silicene. Phys. Rev. B 88, 085322 (2013)CrossRefGoogle Scholar
  2. 2.
    Li, H., Wang, L., Liu, Q., Zheng, J., Mei, W.N., Gao, Z., Shi, J., Lu, J.: High performance silicene nanoribbon field effect transistors with current saturation. Eur. Phys. J. B 85, 274 (2012)CrossRefGoogle Scholar
  3. 3.
    Bishnoi, B., Ghosh, B.: Spin transport in silicene and germanene. RSC Adv. 3, 26153 (2013)CrossRefGoogle Scholar
  4. 4.
    Mehrotra, N., Kumar, N., Sen, A.: Charge transport in a zigzag silicene nanoribbon. AIP. Conf. Proc. 1512, 1304 (2013)CrossRefGoogle Scholar
  5. 5.
    Guzman-Verri, G.G., Lew Yan Voon, L.C.: Electronic structure of silicon-based nanostructures. Phys. Rev. B 76, 075131 (2007)CrossRefGoogle Scholar
  6. 6.
    Liu, C.C., Feng, W., Yao, Y.: Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)CrossRefGoogle Scholar
  7. 7.
    Liu, C.C., Jiang, H., Yao, Y.: Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 195430 (2011)CrossRefGoogle Scholar
  8. 8.
    Lin, Y.M., Jenkins, K.A., Valdes-Garcia, A., Small, J.P., Farmer, D.B., Avouris, P.: Operation of graphene transistors at gigahertz frequencies. Nano Lett. 9, 422 (2009)CrossRefGoogle Scholar
  9. 9.
    Michetti, P., Cheli, M., Iannaccone, G.: Model of tunneling transistors based on graphene on SiC. Appl. Phys. Lett. 96, 133508 (2010)CrossRefGoogle Scholar
  10. 10.
    Han, M., Ozyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)CrossRefGoogle Scholar
  11. 11.
    Yan, Q., Huang, B., Yu, J., Zheng, F., Zang, J., Wu, J., Gu, B.L., Liu, F., Duan, W.: Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano lett. 6, 1469 (2007)CrossRefGoogle Scholar
  12. 12.
    Castro, E.V., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., dos Santos, J.M.B.L., Nilsson, J., Guinea, F., Geim, A.K., Neto, A.H.C.: Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007)CrossRefGoogle Scholar
  13. 13.
    Ezawa, M.: A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 14, 033003 (2012)CrossRefGoogle Scholar
  14. 14.
    Ezawa, M.: Valley polarized metals and quantum anomalous Hall effect in silicene. Phys. Rev. Lett. 109, 055502 (2012)CrossRefGoogle Scholar
  15. 15.
    Ni, Z.Y., Liu, Q.H., Tang, K.C., Zheng, J.X., Zhou, J., Qin, R., Gao, Z.X., Yu, D.P., Lu, J.: Tunable bandgap in silicene and germanene. Nano Lett. 12, 113 (2012)CrossRefGoogle Scholar
  16. 16.
    Vargiamidis, V., Vasilopoulos, P.: Electric- and exchange- field controlled transport through silicene barriers: Conductance gap and near-perfect spin polarization. Appl. Phys. Lett. 105, 223105 (2014)CrossRefGoogle Scholar
  17. 17.
    Sadeghi, H.: Electrical transport model of silicene as a channel of field effect transistor. J. Nanosci. Nanotechnol. 14, 4178 (2014)CrossRefGoogle Scholar
  18. 18.
    Zandvliet, H.J.W.: Can a silicene transistor be realized? Nano Today 9, 691 (2014)CrossRefGoogle Scholar
  19. 19.
    Lay, G.L.: 2D materials: Silicene transistor. Nat. Nanotechnol. 10, 202 (2015)CrossRefGoogle Scholar
  20. 20.
    Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A., Akinwande, D.: Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227 (2015)CrossRefGoogle Scholar
  21. 21.
    Yokoyama, T.: Spin and valley transports in junctions of Dirac fermions. New J. Phys. 16, 085005 (2014)CrossRefGoogle Scholar
  22. 22.
    Vali, M., Dideban, D., Moezi, N.: A scheme for a topological insulator field effect transistor. Phys. E 69, 360 (2015)CrossRefGoogle Scholar
  23. 23.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997)Google Scholar
  24. 24.
    Wang, L., Shen, K., Cho, S.Y., Wu, M.W.: A Scheme for spin transistor with extremely large on/off current ratio. J. Appl. Phys. 104, 123709 (2008)CrossRefGoogle Scholar
  25. 25.
    Meric, I., Han, M.Y., Young, A.F., Ozyilmaz, B., Kim, P., Shepard, K.L.: Curent saturation in zero-bandgap top-gated graphene field effect transistors. Nat. Nanotechnol. 3, 654 (2008)CrossRefGoogle Scholar
  26. 26.
    Szafranek, B.N., Fiori, G., Schall, D., Neumaier, D., Kurz, H.: Current saturation and voltage gain in bilayer graphene field effect transistors. Nano Lett. 12, 1324 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  2. 2.Depertment of Electrical and Computer EngineeringUniversity of KashanKashanIran
  3. 3.Technical and Vocational UniversityKashanIran

Personalised recommendations