Journal of Computational Electronics

, Volume 15, Issue 1, pp 181–190 | Cite as

Mathematical simulation for estimating the potential of the hydrogen-terminated diamond FET in the mm-wave range



The estimation is based on the intrinsic transistor large-signal lumped-element equivalent circuit with the parameters and spline characteristics calculated by means of a two-dimensional model of the transistor active region. This model includes the quasi-hydrodynamic model of hole transport (with very low mobility on the surface), equations of the electric field, and dipole model of the hydrogen-terminated diamond surface. The object of simulation is the structure of a real 100-nm-long gate single-crystal diamond transistor, which is recovered by fitting the simulated output current–voltage characteristics to the experimental. Using the frequency-domain simulation of a power amplifier with such a transistor, a number of RF parameters (power-added efficiency, output power, and others) are calculated as functions of the maximum available power of the RF generator at frequencies of 30 and 60 GHz.


C–H surface dipole Energy balance equation Equivalent circuit Frequency-domain simulation Hydrogen-terminated diamond Quasi-hydrodynamic model 


  1. 1.
    Kasu, M.: Diamond field-effect transistors as microwave power amplifiers. NTT Tech. Rev. 8, 1–5 (2010).
  2. 2.
    Rezek, B.: Atomic and Kelvin force microscopy applied on hydrogenated diamond surfaces. New Diam. Front. Carbon Technol. 15, 275–295 (2005).
  3. 3.
    Stratton, R.: Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. 126, 2002–2014 (1962)CrossRefGoogle Scholar
  4. 4.
    Garber, G.Z.: Quasi-hydrodynamic modeling of heterostructure field-effect transistors. J. Commun. Technol. Electron. 48, 114–117 (2003)Google Scholar
  5. 5.
    Garber, G.Z.: Estimation of the accuracy of the microwave FET equivalent circuit using the quasi-hydrodynamic model of electron transport. Solid-State Electron. 103, 115–121 (2015)CrossRefGoogle Scholar
  6. 6.
    Williams, O.A., Jackman, R.B.: Surface conductivity on hydrogen terminated diamond. Semicond. Sci. Technol. 18, S34–S40 (2003)CrossRefGoogle Scholar
  7. 7.
    Samarskii, A.A.: The Theory of Difference Schemes. Marcel Dekker, New York (2001)CrossRefMATHGoogle Scholar
  8. 8.
    Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron. Devices ED-16, 64–77 (1969)Google Scholar
  9. 9.
    Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices, 3rd edn. Wiley, New York (2007).
  10. 10.
    Isberg, J., Gabrysch, M., Tajani, A., Twitchen, D.J.: High-field electrical transport in single crystal CVD diamond diodes. Adv. Sci. Technol. 48, 73–76 (2006).
  11. 11.
    Schreyvogel, C., Wolfer, M., Kato, H., Schreck, M., Nebel, C.E.: Tuned NV emission by in-plane Al-Schottky junctions on hydrogen terminated diamond. Sci. Rep. 4, 3634 (2014). doi: 10.1038/srep03634.
  12. 12.
    Garber, G.Z., Dorofeev, A.A., Zubkov, A.M., Ivanov, K.A., Kolkovsky, Yu.V.: Design of the SHF power FETs on diamond base with assistance of computer simulation (in Russian). Electron. Eng. Ser. 2(1), 9–16 (2013)Google Scholar
  13. 13.
    Garber, G.Z.: Foundations of Excel VBA Programming and Numerical Methods. PRINTKOM, Moscow (2013).
  14. 14.
    Moll, J.L.: Physics of Semiconductors. McGraw-Hill, New York/San Francisco/Toronto/London (1964)MATHGoogle Scholar
  15. 15.
    Han, S., Pan, L.S., Kania, D.R.: Dynamics of free carriers in diamond. In: Pan, L.S. (ed.) Diamond: Electronic Properties and Applications. Kluwer Academic Publishers, Norwell (1995)Google Scholar
  16. 16.
    Widiger, D.J., Kizilyalli, I.C., Hess, K., Coleman, J.J.: Two-dimensional transient simulation of an idealized high electron mobility transistor. IEEE Trans. Electron. Devices ED–32, 1092–1102 (1985)CrossRefGoogle Scholar
  17. 17.
    Shockley, W.: Electrons and Holes in Semiconductors. D. Van Nostrand Company, Toronto/New York/London (1950).

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Pulsar R&D Manufacturing CompanyMoscowRussia

Personalised recommendations