Journal of Computational Electronics

, Volume 15, Issue 1, pp 260–268 | Cite as

Numerical simulation of the impact of design parameters on the performance of back-contact back-junction solar cell

  • P. Procel
  • M. Zanuccoli
  • V. Maccaronio
  • F. Crupi
  • G. Cocorullo
  • P. Magnone
  • C. Fiegna


This work presents a study based on electro-optical numerical simulations of the impact of geometrical and doping parameters on main figures of merit of crystalline silicon back-contact back-junction solar cells. State-of-the-art physical models in combination with two-dimensional simulations performed by a TCAD tool have been adopted to carry out an extensive and detailed analysis of the influence of many fabrication parameters on performance. The studied design parameters are the doping level in front surface field (FSF), back surface field (BSF) and emitter, and the main geometrical parameters. A doping level value that allows the maximization of the efficiency for the three regions can be clearly identified. In particular, for BSF and emitter, an efficiency degradation is observed for relatively lower doping values and is ascribed to the higher contact recombination while for higher doping values the Auger recombination plays a significant role in reducing the ultimate efficiency. In FSF region the recombination due to defects at the front interface is the main limiting mechanisms for efficiency. On the basis of our analysis, a marked sensitivity of the efficiency to the gap and pitch size is caused by the series resistance increase. The efficiency exhibits a maximum value for an emitter coverage fraction (R) of 85 %. However, in the case of lower emitter coverage, Auger, Shockley–Read–Hall (SRH): in bulk and at interfaces are detrimental for the cell conversion efficiency.


Silicon solar cells Numerical modeling TCAD simulations Recombination analysis 



This work has been partially supported by the Ecuadorian National Department of Science and Technology (SENESCYT).


  1. 1.
    Cousins, P., Smith, D., Luan, H.-C., Maning, J., Dennis, T., Walhauer, A., Wilson, K., Harley, G., Mulligan, W.: Generation 3: improved performance at lower cost. In: Proceeding 35th IEEE Photovoltaic Specialist Conference PVSC, pp. 275–278. IEEE, (2010)Google Scholar
  2. 2.
    Fong, K., Teng, K., McIntosh, K., Blakers, A., Franklin, E., Zin, N., Fell, A.: Optimisation of n+ diffusion and contact size of iBC solar cells. In: Proceedings of 28th European Photovoltaic Solar Energy Conference and Exhibition, pp. 851-855. WIP, (2014)Google Scholar
  3. 3.
    Granek, F.: High-Efficiency Back-Contact Back-Junction Silicon Solar Cells. Fraunhofer (ISE), Freiburg (2009)Google Scholar
  4. 4.
    Altermatt, P.: Models for numerical device simulations of crystalline silicon solar cells–a review. J. Comput. Electron. 10, 314–330 (2011)CrossRefGoogle Scholar
  5. 5.
    Alì, G., Butera, F., Rotundo, N.: Geometrical and physical optimization of a photovoltaic cell by means of a genetic algorithm. J. Comput. Electron. 13, 323–328 (2014)CrossRefGoogle Scholar
  6. 6.
    Florakis, A., Janssens, T., Poortmans, J., Vandervorst, W.: Process modeling for doped regions formation on high efficiency crystalline silicon solar cells. J. Comput. Electron. 13, 95–107 (2014)CrossRefGoogle Scholar
  7. 7.
    Zanuccoli, M., Semenihin, I., Michallon, J., Sangiorgi, E., Fiegna, C.: Advanced electro-optical simulation of nanowire-based solar cells. J. Comput. Electron. 13, 572–584 (2013)CrossRefGoogle Scholar
  8. 8.
    Renshaw, J., Rohatgi, A.: Device optimization for screen printed interdigitated back contact solar cells. In: Proceedings 37th IEEE Photovoltaic Specialists Conference PVSC, pp. 2924–2927. IEEE, (2011)Google Scholar
  9. 9.
    Kim, D., Meemongkolkiat, V., Ebong, A., Rounsaville, B., Upadhyaya, V., Das, V., Rohatgi, A.: 2D-Modeling and development of interdigitated back contact solar cells on low-cost substrates. In: 4th World Conference on Photovoltaic Energy Conversion, Conference Record of 2006, pp. 1417–1420. IEEE, (2006)Google Scholar
  10. 10.
    Reichel, C., Granek, F., Hermle, M., Glunz, S.: Investigation of electrical shading effects in back-contacted back-junction silicon solar cells using the two-dimensional charge collection probability and the reciprocity theorem. J. Appl. Phys. 109, 024507 (2011)CrossRefGoogle Scholar
  11. 11.
    Nichiporuk, O., Kaminski, A., Lemiti, M., Fave, A., Skryshevsky, V.: Optimisation of interdigitated back contacts solar cells by two-dimensional numerical simulation. Sol. Energy Mater. Sol. Cells 86, 517 (2005)CrossRefGoogle Scholar
  12. 12.
    Kluska, S., Ganek, F., Rudiger, M., Hermle, M., Glunz, S.: Moledling and optimization study of industrial n-type high-efficiency back-contact back-junction silicon solar cells. Sol. Energy Mater. Sol. Cells 94, 568 (2010)CrossRefGoogle Scholar
  13. 13.
    McIntosh, K.R., Cudzinovic, M.J., Smith, D.D., Mulligan, W.P., Swanson, R.M.: The choice of silicon wafer for the production of low-cost rear-contact solar cells. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, pp. 971–974. IEEE, (2003)Google Scholar
  14. 14.
    Synopsis, “Sentaurus device user guide,” Version G-2012.06, (2012)Google Scholar
  15. 15.
    Schenk, A.: Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation. J. Appl. Phys. 84, 3684 (1998)CrossRefGoogle Scholar
  16. 16.
    Klaassen, D.: A unified mobility model for device simulation: I. Model equations and concentration dependence. Solid State Electron. 35, 953 (1992)CrossRefGoogle Scholar
  17. 17.
    Klaassen, D.: A unified mobility model for device simulation: II. Temperature dependence of carrier mobility and lifetime. Solid State Electron. 35, 961 (1992)CrossRefGoogle Scholar
  18. 18.
    Richter, A., Glunz, S., Werner, F., Schmidt, J., Cuevas, A.: Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B 86, 165202 (2012)CrossRefGoogle Scholar
  19. 19.
    Ma, F., Liu, H., Liao, B., Chen, J., Du, Z., Samudra, G.S., Aberle, A.G., Hoex, B., Marius Peters, I.: Impact of Auger recombination parameterisations on predicting silicon wafer solar cell performance. J. Comput. Electron. 13, 647–656 (2014)CrossRefGoogle Scholar
  20. 20.
    Shockley, W., Read Jr, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835 (1952)CrossRefMATHGoogle Scholar
  21. 21.
    Hall, R.N.: Electron-hole recombination in germanium. Phys. Rev. 87, 387 (1952)CrossRefGoogle Scholar
  22. 22.
    Glunz, S., Sterk, S., Steeman, R., Warta, W., Knobloch, J., Wtling, W.: Emitter dark saturation currents of high-efficiency solar cells with inverted pyramids. In: Procedings of the 13th European Photovoltaic Solar Energy Conference, pp. 409 – 412. James & James Science Publishers, (1995)Google Scholar
  23. 23.
    Altermatt, P., Schumacher, J., Cuevas, A., Kerr, M., Glunz, S.: Numerical modeling of highly doped Si: P emitters based on Fermi-Dirac. J. Appl. Phys. 92, 3187 (2002)CrossRefGoogle Scholar
  24. 24.
    ASTM G173 - 03, “Standard tables for reference solar spectral irradiances: direct normal and hemispherical on \(37^{\circ }\) tilted surface,” (2012)Google Scholar
  25. 25.
    Magnone, P., Tonini, D., De Rose, R., Frei, M., Crupi, F., Sangiorgi, E., Fiegna, C.: Numerical simulation and modeling of resistive and recombination losses in MWT solar cells. IEEE J. Photovolt. 3, 1215 (2013)CrossRefGoogle Scholar
  26. 26.
    De Rose, R., Magnone, P., Zanuccoli, M., Sangiorgi, E.: Loss analysis of silicon solar cells by means of numerical device simulation. In: 14th International Conference on Ultimate Integration on Silicon (ULIS), pp. 205–208. IEEE, (2013)Google Scholar
  27. 27.
    Procel, P., Maccaronio, V., Crupi, F., Cocorullo, G., Zanuccoli, M., Magnone, P., Fiegna, C.: In: Proceedings of 4rd SiliconPV, pp. 128–132. Elsevier, ’s-Hertogenbosch, (2014)Google Scholar
  28. 28.
    King, R., Sinton, R., Swanson, R.: Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum efficiency. IEEE Trans. Electron Devices 37, 365 (1990)CrossRefGoogle Scholar
  29. 29.
    Granek, F., Hermle, M., Reichel, C., Grohe, A., Schultz-Wittmann, O., Glunz, S.: Positive effects of front surface field in high efficiency back-contact back-junction N-type silicon solar cells. In: 33rd IEEE Photovoltaic Specialists Conference, pp. 1–5. IEEE, (2008)Google Scholar
  30. 30.
    King, R., Swanson, R.: Studies of diffused boron emitters: saturation current, bandgap narrowing, and surface recombination velocity. IEEE Trans. Electron Devices 8, 1399 (1991)CrossRefGoogle Scholar
  31. 31.
    Renshaw, J., Kang, M., Meernonqkolkiar, V., Rohatgi, A., Carlson, D., Bennett, M.: 3D-modeling of a back point contact solar cell structure with a selective emitter. In: 34th IEEE Photovoltaic Specialists Conference (PVSC), pp. 375-379, (2009)Google Scholar
  32. 32.
    Procel, P., Maccaronio, V., Crupi, F., Cocorullo, G., Zanuccoli, M.: Analysis of the impact of rear side geometry on performance of back-contact back-junction solar cells. In: Conference on 2014 Fotonica AEIT Italian Photonics Technologies, pp. 1–4. IEEE, (2014)Google Scholar
  33. 33.
    Hermle, M., Granek, F., Schultz-Wittmann, O., Glunz, S.: Shading effects in back-junction back-contacted silicon solar cells. In: 33rd IEEE Photovoltaic Specialist Conference, pp. 1 – 4. (2008)Google Scholar
  34. 34.
    Granek, F., Hermle, M., Huljic, M., Schultz-Wittmann, O., Glunz, S.: Enhanced lateral current transport via the front N+ N-type high-efficiency back-junction back-contact silicon solar cells. Prog. Photovolt. Res. Appl. 17, 47 (2009)CrossRefGoogle Scholar
  35. 35.
    Koduvelikulathu, L., Mihailetchi, V., Galbiati, G., Halm, A., Roescu, R., Kopecek, R., Peter, K.: 2-D modelling of n-type ibc solar cells using silvaco atlas simulation. In: 11th International Conference on Numerical Simulation of Optoelectronic Devices, IEEE, Rome, (2011). postdeadline paperGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e SistemisticaUniversità della CalabriaRendeItaly
  2. 2.Advanced Research Center on Electronic Systems and the Department of Electrical, Electronic, and Information EngineeringUniversity of BolognaCesenaItaly

Personalised recommendations