Journal of Computational Electronics

, Volume 14, Issue 3, pp 828–843 | Cite as

An analytical approach for parameter extraction in linear and saturation regions of top and bottom contact organic transistors

  • Poornima Mittal
  • Yuvraj Singh Negi
  • R. K. Singh


This paper analyzes the behaviour of top contact (TC) and bottom contact (BC) OTFTs through charge drift model modifying in terms of device series resistance. Subsequently, the drain and the gate voltages take into account the potential drop across the respective contacts. The mobility is modified in terms of overdrive voltage \((V_{GS}-V_{T})\) and mobility enhancement factor as well. Additionally, the mathematical models are employed to extract the contact resistance including other parameters, such as, field dependent mobility, threshold voltage, mobility enhancement factor and drain current, separately for linear and saturation regimes. The model includes straightforward differential mathematics accounting of gate bias dependent contact resistance to evaluate the parameters analytically that too with single device only This resolves the complexity for realizing several devices with exactly same dimensions (except L) and moreover with same physical fabrication parameters. Besides this, the simulation is performed for four different TC and BC OTFTs using Atlas-Silvaco to comprehensively understand the device physics. Finally, the model is validated in terms of output characteristics and performance parameters against the experiment and simulation results. Analytically extracted mobility along with current for all four OTFTs is in a close harmony to the simulation results with an average error of 4 and 2.7 % in linear and saturation regions, respectively; whereas \(V_{T}\) is reasonably matched with 2 and 3 % average deviation.


Analytical model Bottom contact  Contact resistance Mobility enhancement factor  Organic transistor  Top contact 


  1. 1.
    Matsubara, R., Harada, Y., Hatta, K., Yamamoto, T., Takei, M., Ishizaki, M., Matsumura, M., Ota, K., Ito, M.: Printing Technologies for Organic TFT Array for Electronic Paper. SID Symposium Digest of Technical Papers 43, 419–421 (2012) (1)Google Scholar
  2. 2.
    Brianda, D., Opreab, A., Courbata, J., Barsanb, N.: Making environmental sensors on plastic foils. Mater. Today 14, 416–423 (2011)CrossRefMATHGoogle Scholar
  3. 3.
    Takamiya, M., Sekitani, T., Kato, Y., Kawaguchi, H.: An organic FET SRAM with back gate to increase static noise margin and its application to braille sheet display. IEEE J. Solid-State Circuits 42, 93–100 (2007)CrossRefGoogle Scholar
  4. 4.
    Liu, P.T., Chu, L.W.: Innovative voltage driving pixel circuit using organic thin-film transistor for AMOLEDs. J. Display Technol. 5, 224–228 (2009)CrossRefGoogle Scholar
  5. 5.
    Guerin, M., Daami, A., Jacob, S., Bergeret, E., Benevent, E., Pannier, P., Coppard, R.: High gain fully printed organic complementary circuits on flexible plastic foils. IEEE Trans. Electron Devices 58, 3587–3593 (2011)CrossRefGoogle Scholar
  6. 6.
    Schon, J.H., Batlogg, B.: Trapping in organic field-effect transistors. J. Appl. Phys. 89, 336–341 (2001)CrossRefGoogle Scholar
  7. 7.
    Gupta, D., Jeon, N., Yoo, S.: Modeling the electrical characteristics of TIPS-pentacene thin film transistors: effect of contact barrier, field-dependent mobility and traps. Organ. Electron. 9, 1026–1031 (2008)CrossRefGoogle Scholar
  8. 8.
    Necliudov, P., Shur, M., Gundlach, D., Jackson, T.: Modeling of organic thin film transistors of different designs. J. Appl. Phys. 88, 6594–6597 (2000)CrossRefGoogle Scholar
  9. 9.
    Marinov, O., Deen, M.J., Datars, R.: Compact modeling of charge mobility in organic thin film transistors. J. Appl. Phys. 106, 064501-1–064501-13 (2009)CrossRefGoogle Scholar
  10. 10.
    Gundlach, D.J., Zhou, L., Nichols, J.A., Jackson, T.N., Necliudov, P.V., Shur, M.S.: An experimental study of contact effects in organic thin film transistors. J. Appl. Phys. 100, 024509-1–024509-13 (2006)CrossRefGoogle Scholar
  11. 11.
    Xie, Z., Abdou, M., Lu, A., Deen, M.J., Holdcroft, S.: Electrical characteristics of poly (3-hexylthiophene) thin film MISFETs. Can. J. Phys. 70, 1171–1177 (1992)CrossRefGoogle Scholar
  12. 12.
    Cerdeira, A., Estrada, M., Garcia, R., Ortiz-Conde, A., Garcia Sanchez, F.J.: New procedure for the extraction of basic a-Si: H TFT model parameters in the linear and saturation regions. Solid State Electron. 45, 1077–1080 (2001)CrossRefGoogle Scholar
  13. 13.
    Marinov, O., Deen, M.J., Zschieschang, U., Klauk, H.: Organic thin film transistors: Part I. Compact DC modeling. IEEE Trans. Electron Devices 56, 2952–2961 (2009)CrossRefGoogle Scholar
  14. 14.
    Kumar, B., Kaushik, B.K., Negi, Y.S., Saxena, S., Varma, G.D.: Analytical modeling and parameter extraction of top and bottom contact structures of organic thin film transistors. Microelectron. J. 44, 736–743 (2013)CrossRefGoogle Scholar
  15. 15.
    Tejada, J.A.J., Villanueva, J.A.L., Varo, P.L., Awawdeh, K.M., Deen, M.J.: Compact modeling and contact effects in thin film transistors. IEEE Trans. Electron Devices 61, 266–277 (2014)CrossRefGoogle Scholar
  16. 16.
    Puntambekar, K.P., Pesavento, P.V., Frisbie, C.D.: Surface potential profiling and contact resistance measurements on operating pentacene thin film transistors by Kelvin probe force microscopy. Appl. Phys. Lett. 83, 5539–5541 (2003)CrossRefGoogle Scholar
  17. 17.
    Pesavento, P.V., Chesterfield, R.J., Newman, C.R., Frisbie, C.D.: Gated four-probe measurements on pentacene thin-film transistors: contact resistance as a function of gate voltage and temperature. J. Appl. Phys. 96, 7312–7324 (2004)CrossRefGoogle Scholar
  18. 18.
    Necliudov, P.V., Shur, M.S., Gundlach, D.J., Jackson, T.N.: Contact resistance extraction in pentacene thin film transistors. Solid-State Electron. 47, 259–262 (2003)CrossRefGoogle Scholar
  19. 19.
    Jung, K.D., Kim, Y.C., Park, B.G., Shin, H., Lee, J.D.: Modeling and parameter extraction for the series resistance in thin-film transistors. IEEE Trans. Electron Devices 56, 431–440 (2009)CrossRefGoogle Scholar
  20. 20.
    Klauk, H., Zschieschang, U., Halik, M.: Low voltage organic thin film transistors with large transconductance. J. Appl. Phys. 102, 074514-1–074514-7 (2007)CrossRefGoogle Scholar
  21. 21.
    Cosseddu, P., Bonfiglio, A.: A comparison between bottom contact and top contact all organic field effect transistors assembled by soft lithography. Thin Solid Films 515, 7551–7555 (2007)CrossRefGoogle Scholar
  22. 22.
    ATLAS user’s manual: Device simulation software. Silvaco International, Santa Clara (2014)Google Scholar
  23. 23.
    Shim, C.H., Maruoka, F., Hattori, R.: Structural analysis on organic thin film transistor with device simulation. IEEE Trans. Electron Devices 57, 195–200 (2010)CrossRefGoogle Scholar
  24. 24.
    Gupta, D., Katiyar, M., Gupta, D.: An analysis of the difference in behavior of top and bottom contact organic thin film transistors using device simulation. Organ. Electron. 10, 775–784 (2012)CrossRefGoogle Scholar
  25. 25.
    Sapp, S., Luebben, S., Losovyj, Y.B., Jeppson, P., Schulz, D.L., Caruso, A.N.: Work function and implications of doped poly(3,4-ethylenedioxythiophene)-co-poly(ethylene glycol). Appl. Phys. Lett. 88, 152107-1–152107-3 (2006)CrossRefGoogle Scholar
  26. 26.
    Oberhoff, D., Pernstich, K.P., Gundlach, D.J., Batlogg, B.: Modeling and parameter extraction on pentacene TFTs. In: Proceedings of SPIE 5522, 69–80 (2004)Google Scholar
  27. 27.
    Hamadani, B., Natelson, D.: Nonlinear charge injection in organic field effect transistors. J. Appl. Phys. 97, 064508-1–064508-7 (2005)CrossRefGoogle Scholar
  28. 28.
    Li, C., Pan, F., Wang, X., Wang, L., Wang, H., Yan, D.: Effect of the work function of gate electrode on hysteresis characteristics of organic thin-film transistors with Ta\(_{2}\)O\(_{5}/\)polymer as gate insulator. Organ. Electron. 10, 948–953 (2009)Google Scholar
  29. 29.
    Chiang, C.S., Martin, S., Kanicki, J., Ugai, Y., Yukawa, T., Takeuchi, S.: Top-gate staggered amorphous silicon thin-film transistors: series resistance and nitride thickness effects. Jpn. J. Appl. Phys. 37, 5914–5920 (1998)CrossRefGoogle Scholar
  30. 30.
    Zaumseil, J., Baldwin, K.W., Rogers, J.A.: Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination. J. Appl. Phys. 93, 6117–6124 (2003)CrossRefGoogle Scholar
  31. 31.
    Burgi, L., Richards, T.J., Friend, R.H., Sirringhaus, H.: Close look at charge carrier injection in polymer field effect transistors. J. Appl. Phys. 94, 6129–6137 (2003)CrossRefMATHGoogle Scholar
  32. 32.
    Resendiz, L., Estrada, M., Cerdeira, A., Iniguez, B., Deen, M.J.: Effect of active layer thickness on the electrical characteristics of polymer thin film transistors. Organ. Electron 11, 1920–1927 (2010)CrossRefGoogle Scholar
  33. 33.
    Kano, M., Minari, T., Tsukagoshi, K., Maeda, H.: Control of device parameters by active layer thickness in organic thin film transistors. Appl. Phy. Lett. 98, 073307-1–073307-3 (2011)Google Scholar
  34. 34.
    Natali, D., Fumagalli, L., Sampietro, M.: Modeling of organic thin film transistors: effect of contact resistances. J. Appl. Phys. 101, 014501-1–014501-12 (2007)CrossRefGoogle Scholar
  35. 35.
    Deen, M.J., Marinov, O., Zschieschang, U., Klauk, H.: Organic thin-film transistors: Part II- Parameter extraction. IEEE Trans. Electron Devices 56, 2962–2968 (2009)CrossRefGoogle Scholar
  36. 36.
    Mittal, P., Negi, Y.S., Singh, R.K.: Mapping of performance limiting issues to analyze top and bottom contact organic thin film transistors. J. Comput. Electron. 14, 360–379 (2015)CrossRefGoogle Scholar
  37. 37.
    Kim, K.D., Song, C.K.: Low voltage organic thin film transistors using a hybrid gate dielectric consisting of aluminum oxide and poly (vinyl phenol). Jnp. J. Appl. Phys. 49, 111603-1–111603-3 (2010)Google Scholar
  38. 38.
    Street, R.A., Salleo, A.: Contact effects in polymer transistors. Appl. Phys. Lett. 81, 2887–2889 (2002)CrossRefGoogle Scholar
  39. 39.
    Resendiz, L., Estrada, M., Cerdeira, A., Cabrera, V.: Analysis of the performance of an inverter circuit: varying the thickness of the active layer in polymer thin film transistors with circuit simulation. Jpn. J. Appl. Phy. 51, 04DK04-1–04DK04-6 (2012)CrossRefGoogle Scholar
  40. 40.
    Kumar, B., Kaushik, B.K., Negi, Y.S., Goswami, V.: Single and dual gate OTFTs based robust organic digital design. Microelectron. Reliab. 54, 100–109 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Poornima Mittal
    • 1
    • 3
  • Yuvraj Singh Negi
    • 2
  • R. K. Singh
    • 3
  1. 1.Department of Electronics & Communication EngineeringGraphic Era UniversityDehradunIndia
  2. 2.Department of Polymer and Process EngineeringIndian Institute of TechnologyRoorkeeIndia
  3. 3.Department of Electronics & Communication EngineeringUttarakhand UniversityDehradunIndia

Personalised recommendations