Skip to main content
Log in

Existence of bounded discrete steady state solutions of the van Roosbroeck system with monotone Fermi–Dirac statistic functions

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

If in the classic van Roosbroeck system (Bell Syst Tech J 29:560–607, 1950) the statistic function is modified, the equations can be derived by a variational formulation or just using a generalized Einstein relation. In both cases a dissipative generalization of the Scharfetter–Gummel scheme (IEEE Trans Electr Dev 16, 64–77, 1969), understood as a one-dimensional constant current approximation, is derived for strictly monotone coefficient functions in the elliptic operator \(\nabla \cdot { {f}(v)} \nabla \), v chemical potential, while the hole density is defined by \(p={\mathcal {F}}(v)\le e^v.\) A closed form integration of the governing equation would simplify the practical use, but mean value theorem based results are sufficient to prove existence of bounded discrete steady state solutions on any boundary conforming Delaunay grid. These results hold for any piecewise, continuous, and monotone approximation of \({ {f}(v)}\) and \({\mathcal {F}}(v)\). Hence an implementation based on this discretization will inherit the same stability properties as the Boltzmann case based on the Scharfetter–Gummel scheme. Large chemical potentials and and related degeneracy effects in semiconductors can be approximated. A proven, stability focused blueprint for the discretization of a fairly general, steady state Fermi–Dirac like drift–diffusion setting for semiconductors using mainly new results to extend classic ideas is the main goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Van Roosbroeck, W.: Theory of flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J. 29, 560–607 (1950)

    Article  Google Scholar 

  2. Scharfetter, D.L.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electr. Dev 16, 64–77 (1969)

    Article  Google Scholar 

  3. Becker, Julian, Gärtner, Klaus, Klanner, Robert, Richter, Rainer: Simulation and experimental study of plasma effects in planar silicon sensors. Nucl. Instrum. Methods Phys. Res. Sect. A 624(3), 716–727 (2010)

    Article  Google Scholar 

  4. Pasveer, W.F., et al.: Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys. Rev. Lett. 94, 206601 (2005)

    Article  Google Scholar 

  5. Gajewski, H., Gärtner, K.: A dissipative discretization scheme for a nonlocal phase segregation model. Z. Angew. Math. Mech. 85, 815–822 (2005)

    Article  MATH  Google Scholar 

  6. Gajewski, H., Gröger, K.: Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi–Dirac statistics. Math. Nachr. 140, 7–36 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gajewski, H., Gärtner, K.: On the discretization of van Roosbroeck’s equations with magnetic field. Z. Angew. Math. Mech. 76, 247–264 (1996)

    Article  MATH  Google Scholar 

  8. Gajewski, H., Gröger, K.: Reaction–diffusion processes of electrically charged species. Math. Nachr. 177, 109–130 (1996)

    Article  MathSciNet  Google Scholar 

  9. Gajewski, H., Albinus, G., Hünlich, R.: Thermodynamic design of energy models of semiconductor devices. Nonlinearity 15, 367–383 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Glitzky, A., Gärtner, K.: Existence of bounded steady state solutions to spin-polarized drift–diffusion systems. SIAM J. Math. Anal. 41, 2489–2513 (2010)

    Article  MATH  Google Scholar 

  11. Glitzky, A., Gärtner, K.: Energy estimates for continuous and discretized electro-reaction–diffusion systems. Nonlinear Anal. 70, 788–805 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gärtner, K.: Existence of bounded discrete steady-state solutions of the van Roosbroeck system on boundary conforming delaunay grids. SIAM J. Sci. Comput. 31(2), 1347–1362 (2009)

    Article  MATH  Google Scholar 

  13. Griepentrog, J.A.: On regularity, positivity and long-time behavior of solutions to an evolution system of nonlocally interacting particles. Report, WIAS, Preprint No. 1932 (2014)

  14. Liero, M., Mielke, A.: Gradient structures and geodesic convexity for reaction-diffusion systems. Phil. Trans. R. Soc. A 371, 20120346 (2013). (28 pages)

  15. Bonč-Bruevič, V.L., Kalashnikov, S.G.: Halbleiterphysik. Deutscher Verlag der Wissenschaften, Berlin (1982)

    Book  Google Scholar 

  16. Delaunay, B.: Sur La Sphére Vide. Izvestia Akademii Nauk SSSR. Otd. Matem. i Estestv. Nauk 7, 793–800 (1934)

    Google Scholar 

  17. Si, H.: Three dimensional boundary conforming delaunay mesh generation. PhD thesis, TU Berlin (2008)

  18. Zeidler, E.: Vorlesung über nichtlineare Funktionalanalysis I—Fixpunktsätze. Teubner, Leipzig (1976). in German

    Google Scholar 

  19. Blakemore, J.S.: Approximations for Fermi–Dirac integrals, especially the function \({\cal F}_{1/2}(\eta )\) used to describe electron density in a semiconductor. Solid State Electron. 25, 1067–1076 (1982)

    Article  Google Scholar 

  20. Gradstein, I.S., Ryzhik, I.M.: Tables of Integrals, Sums, Series, and Products. Fizmatgiz, Moskow (1962). in Russian

    Google Scholar 

Download references

Acknowledgments

The author thanks A. Glitzky and J. A. Griepentrog for very helpful discussions, H. Doan for the close to rounding error Polylog data used for the approximations, and T. Koprucki for the pointer to [19]. The reviewer comments are acknowledged, too. Their more outside point of view was very helpful to improve the readability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Gärtner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gärtner, K. Existence of bounded discrete steady state solutions of the van Roosbroeck system with monotone Fermi–Dirac statistic functions. J Comput Electron 14, 773–787 (2015). https://doi.org/10.1007/s10825-015-0712-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0712-2

Keywords

Mathematics Subject Classification

Navigation