Journal of Computational Electronics

, Volume 14, Issue 1, pp 309–320 | Cite as

Quantum corrected drift-diffusion model for terahertz IMPATTs based on different semiconductors

  • Aritra Acharyya
  • Jayabrata Goswami
  • Suranjana Banerjee
  • J. P. Banerjee


The authors have developed a quantum corrected drift-diffusion model for impact avalanche transit time (IMPATT) devices by coupling the density gradient model with the classical drift-diffusion model. A large-signal simulation technique has been developed by incorporating the quantum potentials in the current density equations for the analysis of double-drift region IMPATT devices based on different semiconductors such as Wurtzite–GaN, InP, type-IIb diamond (C), 4H–SiC and Si deigned to operate at different millimeter-wave (mm-wave) and terahertz (THz) frequencies. It is observed that, the RF power output and DC to RF conversion efficiency of the devices operating at higher mm-wave (\(>\)140 GHz) and THz frequencies reduce due to the incorporation of quantum corrections in the model; but the effect of quantum corrections are negligible for the devices operating at lower mm-wave frequencies (\(\le \)140 GHz).


Bohm potential Classical drift-diffusion (CLDD) model DDR IMPATTs Large-signal (L-S) simulation Quantum correction Quantum corrected drift-diffusion (QCDD) model 



The senior most author, Professor (Dr.) J. P. Banerjee (same as J. P. Bandyopadhyay) is grateful to the University Grants Commission, India for supporting the research through the award of an Emeritus Fellowship in the Institute of Radio Physics and Electronics, University of Calcutta.


  1. 1.
    Eisele, H., Chen, C.C., Munns, G.O., Haddad, G.I.: The potential of InP IMPATT diodes as high-power millimeter-wave sources: First experimental results. IEEE MTT-S International Microwave Symposium Digest, pp. 529–532 (1996)Google Scholar
  2. 2.
    Mukherjee, M., Majumder, N.: Optically Illuminated 4H–SiC terahertz IMPATT device. Egypt J. Solids 30(1), 87–101 (2007)Google Scholar
  3. 3.
    Mukherjee, M., Majumder, N., Roy, S.K.: Prospects of 4H–SiC double drift region IMPATT device as a photo-sensitive high power source at 0.7 terahertz frequency regime. Active Passiv. Electron. Compon. 2008, 1–9 (2008)CrossRefGoogle Scholar
  4. 4.
    Mukherjee, M., Roy, S.K.: Optically modulated III–V nitride-based top-mounted and flip-chip IMPATT oscillators at terahertz regime: studies on the shift of avalanche transit time phase delay due to photogenerated carriers. IEEE Trans. Electron Devices 56(7), 1411–1417 (2009)CrossRefGoogle Scholar
  5. 5.
    Trew, R.J., Yan, J.B., Mock, P.M.: The potentiality of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc. IEEE 79(5), 598–620 (1991)CrossRefGoogle Scholar
  6. 6.
    Acharyya, A., Banerjee, J.P.: Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl. Nanosci. 4, 1–14 (2014)CrossRefGoogle Scholar
  7. 7.
    Evans, W.J., Haddad, G.I.: A large-signal analysis of IMPATT diodes. IEEE Trans. Electron Devices 15(10), 708–717 (1968)CrossRefGoogle Scholar
  8. 8.
    Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 6(1), 64–77 (1969)CrossRefGoogle Scholar
  9. 9.
    Gupta, M.S., Lomax, R.J.: A current-excited large-signal analysis of IMPATT devices and its circuit implementations. IEEE Trans. Electron Devices 20, 395–399 (1973)CrossRefGoogle Scholar
  10. 10.
    Jüngel, A., Tang, S.: A relaxation scheme for the hydrodynamic equations for semiconductors. Appl. Numer. Math. 43, 229–252 (2002)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Aluru, N.R., Raefsky, A., Pinsky, P.M., Law, K.H., Goossens, R.J.G., Dutton, R.W.: A finite element formulation for the hydrodynamic semiconductor device equations. Comput. Methods Appl. Mech. Eng. 107, 269–298 (1993)CrossRefMATHGoogle Scholar
  12. 12.
    Sadi, T., Thobel, J.L.: Analysis of the high-frequency performance of InGaAs/InAlAs nanojunctions using a 3D Monte Carlo simulator. J. Appl. Phys. 106, 083709 (2009)CrossRefGoogle Scholar
  13. 13.
    Sadi, T., Kivisaari, P., Oksanen, J., Tulkki, J.: On the correlation of the Auger generated hot electron emission and efficiency droop in III-N LEDs. Appl. Phys. Lett. 105, 091106-1-5 (2014)CrossRefGoogle Scholar
  14. 14.
    Iniguez-de-la-Torre, I., et al.: Influence of the surface charge on the operation of ballistic T-branch junctions: a self-consistent model for Monte Carlo simulations. Semicond. Sci. Technol 22, 663–670 (2007)CrossRefGoogle Scholar
  15. 15.
    MacPherson, R.F., Dunn, G.M., Pilgrim, N.J.: Simulation of gallium nitride Gunn diodes at various doping levels and temperatures for frequencies up to 300 GHz by Monte Carlo simulation, and incorporating the effects of thermal heating. Semicond. Sci. Technol. 23, 055005 (2008)CrossRefGoogle Scholar
  16. 16.
    Vasileska, D., Mamaluy, D., Khan, H.R., Raleva, K., Goodnick, S.M.: Semiconductor device modeling. J. Comput. Theor. Nanosci. 5, 999–1030 (2008)CrossRefGoogle Scholar
  17. 17.
    Acharyya, A., Banerjee, S., Banerjee, J.P.: Influence of skin effect on the series resistance of millimeter-wave of IMPATT devices. J. Comput. Electron. 12(3), 511–525 (2013)CrossRefGoogle Scholar
  18. 18.
    Acharyya, A., Chakraborty, J., Das, K., Datta, S., De, P., Banerjee, S., Banerjee, J.P.: Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime. J. Semicond. 34(10), 104003-1-8 (2013)CrossRefGoogle Scholar
  19. 19.
    Acharyya, A., Datta, K., Ghosh, R., Sarkar, M., Sanyal, R., Banerjee, S., Banerjee, J.P.: Diamond based DDR IMPATTs: prospects and potentiality as millimeter-wave source at 94 GHz atmospheric window. Radioengineering 22(2), 624–631 (2013)Google Scholar
  20. 20.
    Acharyya, A., Banerjee, S., Banerjee, J.P.: A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-band Si IMPATTs from the electric field snap-shots. Int. J. Microw. Wirel. Technol. 5(1), 91–100 (2013)CrossRefGoogle Scholar
  21. 21.
    Acharyya, A., Mallik, A., Banerjee, D., Ganguli, S., Das, A., Dasgupta, S., Banerjee, J.P.: IMPATT devices based on group III–V compound semiconductors: prospects as potential terahertz radiators. HKIE Trans. 21(3), 135–147 (2014)CrossRefGoogle Scholar
  22. 22.
    Acharyya, A., Chakraborty, J., Das, K., Datta, S., De, P., Banerjee, S., Banerjee, J.P.: Large-signal characterization of DDR silicon IMPATTs operating up to 0.5 THz. Int. J. Microw. Wirel. Technol. 5(5), 567–578 (2013)CrossRefGoogle Scholar
  23. 23.
    Acharyya, A., Banerjee, S., Banerjee, J.P.: Large-signal simulation of 94 GHz pulsed DDR silicon IMPATTs including the temperature transient effect. Radioengineering 21(4), 1218–1225 (2012)Google Scholar
  24. 24.
    Acharyya, A., Banerjee, S., Banerjee, J.P.: Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. J. Semicond. 34(2), 024001-1-12 (2013)CrossRefGoogle Scholar
  25. 25.
    Acharyya, A., Chatterjee, S., Goswami, J., Banerjee, S., Banerjee, J.P.: Quantum drift-diffusion model for IMPATT devices. J. Comput. Electron. 13, 739–752 (2014)CrossRefGoogle Scholar
  26. 26.
    Ancona, M.G., Tiersten, H.F.: Macroscopic physics of the silicon inversion layer. Phys. Rev. B 35, 7959–7965 (1987)CrossRefGoogle Scholar
  27. 27.
    Ancona, M.G., Yu, Z., Dutton, R.W., Voorde, P.J.V., Cao, M., Vook, D.: Density-gradient analysis of MOS tunneling. IEEE Trans. Electron Devices 47(12), 2310–2319 (2000)CrossRefGoogle Scholar
  28. 28.
    Ancona, M.G.: Density-gradient theory: a macroscopic approach to quantum confinement and tunneling in semiconductor devices. J. Comput. Electron. 10, 65–97 (2011)CrossRefGoogle Scholar
  29. 29.
    Falco, C.D., Gatti, E., Lacaita, A.L., Sacco, R.: Quantum-corrected drift-diffusion models for transport in semiconductor devices. J. Comput. Phys. 204(2), 533–561 (2005)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Electronic Archive: New semiconductor materials, characteristics and properties. (2014). Accessed 12 Sept. 2014
  31. 31.
    Shiyu, S.C., Wang, G.: High-field properties of carrier transport in bulk wurtzite GaN: Monte Carlo perspective. J. Appl. Phys. 103, 703–708 (2008)Google Scholar
  32. 32.
    Kramer, B., Micrea, A.: Determination of saturated electron velocity in GaAs’. Appl. Phys. Lett. 26, 623–624 (1975)CrossRefGoogle Scholar
  33. 33.
    Ferry, D.K.: High-field transport in wide-bandgap semiconductors. Phys. Rev. B 12, 2361–2369 (1975)CrossRefGoogle Scholar
  34. 34.
    Canali, C., Gatti, E., Kozlov, S.F., Manfredi, P.F., Manfredotti, C., Nava, F., Quirini, A.: Electrical properties and performances of neutral diamond nuclear radiation detectors. Nucl. Instrum. Methods 160, 73–77 (1979)CrossRefGoogle Scholar
  35. 35.
    Vassilevski, K.V., Zekentes, K., Zorenko, A.V., Romanov, L.P.: Experimental determination of electron drift velocity in 4H–SiC \(\text{ p }^{+}-\text{ n }-\text{ n }^{+}\) avalanche diodes. IEEE Electron Device Lett. 21, 485–487 (2000)CrossRefGoogle Scholar
  36. 36.
    Canali, C., Ottaviani, G., Quaranta, A.A.: Drift velocity of electrons and holes and associated anisotropic effects in silicon. J. Phys. Chem. Solids 32(8), 1707–1720 (1971)CrossRefGoogle Scholar
  37. 37.
    Sze, S.M., Ryder, R.M.: Microwave avalanche diodes. Proc. IEEE Special Issue Microw. Semicond. Devices 59, 1140–1154 (1971)Google Scholar
  38. 38.
    Acharyya, A., Banerjee, J.P.: Potentiality of IMPATT devices as terahertz source: an avalanche response time based approach to determine the upper cut-off frequency limits. IETE J. Res. 59(2), 118–127 (2013)CrossRefGoogle Scholar
  39. 39.
    Acharyya, A., Banerjee, S., Banerjee, J.P.: Potentiality of semiconducting diamond as base material of millimeter-wave and terahertz IMPATT devices. J. Semicond. 35(3), 034005-1-11 (2014)CrossRefGoogle Scholar
  40. 40.
    Acharyya, A., Mukherjee, M., Banerjee, J. P.: Effects of tunnelling current on mm-wave IMPATT devices. Int. J. Electron. 1–28 (2014). doi: 10.1080/00207217.2014.982211
  41. 41.
    Kunihiro, K., Kasahara, K., Takahashi, Y., Ohno, Y.: Experimental evaluation of impact ionization coefficients in GaN. IEEE Electron Device Lett. 20, 608–610 (1999)CrossRefGoogle Scholar
  42. 42.
    Umebu, I., Chowdhury, A.N.M.M., Robson, P.N.: Ionization coefficients measured in abrupt InP junction. Appl. Phys. Lett. 36, 302–303 (1980)CrossRefGoogle Scholar
  43. 43.
    Konorova, E.A., Kuznetsov, Y.A., Sergienko, V.A., Tkachenko, S.D., Tsikunov, A.K., Spitsyn, A.V., Danyushevski, Y.Z.: Impact ionization in semiconductor structures made of ion-implanted diamond. Sov. Phys. - Semicond. 17, 146–149 (1983)Google Scholar
  44. 44.
    Konstantinov, A.O., Wahab, Q., Nordell, N., Lindefelt, U.: Ionization rates and critical fields in 4H–Silicon Carbide. Appl. Phys. Lett. 71, 90–92 (1997)CrossRefGoogle Scholar
  45. 45.
    Grant, W.N.: Electron and hole ionization rates in epitaxial Silicon. Solid State Electron 16(10), 1189–1203 (1973)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Elta, M.E.: The effect of mixed tunneling and avalanche breakdown on microwave transit time diodes (PhD Dissertation). Electron Physics Laboratory, University of Michigan, Ann Arbor, MI, Technical Report (1978)Google Scholar
  47. 47.
    Kane, E.O.: Theory of tunneling. J. Appl. Phys. 32, 83–91 (1961)CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Ancona, M.G.: Macroscopic description of quantum-mechanical tunneling. Phys. Rev. B 42, 1222–1223 (1990)CrossRefGoogle Scholar
  49. 49.
    Ancona, M.G.: Density-gradient analysis of field emission from metals. Phys. Rev. B 46, 4874–4883 (1992)CrossRefGoogle Scholar
  50. 50.
    Luy, J.F., Casel, A., Behr, W., Kasper, E.: A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans. Electron Devices 34(5), 1084–1089 (1987)CrossRefGoogle Scholar
  51. 51.
    Wollitzer, M., Buchler, J., Schafflr, F., Luy, J.F.: D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz. Electron. Lett. 32, 122–123 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Aritra Acharyya
    • 1
  • Jayabrata Goswami
    • 2
  • Suranjana Banerjee
    • 3
  • J. P. Banerjee
    • 4
  1. 1.Supreme Knowledge Foundation Group of InstitutionsHooghlyIndia
  2. 2.Techno India BanipurBanipurIndia
  3. 3.Academy of TechnologyWest Bengal University of TechnologyHooghlyIndia
  4. 4.Institute of Radio Physics and ElectronicsUniversity of CalcuttaKolkataIndia

Personalised recommendations