Skip to main content
Log in

TeraHertz electronic noise in field-effect transistors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We present a theoretical investigation of high-frequency electronic noise in field-effect transistors used as detectors of TeraHertz radiation. Calculations are performed using the hydrodynamic-Langevin approach and specialized to the case of InGaAs high-electron mobility transistors. The main physical phenomena associated with the effect of branching of the total current between channel and gate and the appearance of two-dimensional plasma waves are discussed. We demonstrate that thermally excited standing plasma waves originate series of resonant peaks in the corresponding noise spectral densities whose presence can be controlled by the embedding circuit. A significant damping of the high-frequency excess noise is found when the transistor is submitted to a two-lasers optical photo-excitation presenting a beating frequency in the TeraHertz range. Finally, we discuss the dependence of the damping effect, as well as a shift of the resonance peaks from the presence of channel ungated regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blin, S., Tohme, L., Hisatake, S., Arakawa, K., Nouvel, P., Coquillat, D., Penarier, A., Torres, J., Varani, L., Knap, W., Nagatsuma, T.: Plasma-wave detectors for terahertz wireless communication. Electron. Lett. 33, 1354–1356 (2012)

  2. Shiktorov, P., Starikov, E., Gružzinskis, V., Varani, L., Sabatini, G., Marinchio, H., Reggiani, L.: Problems of noise modeling in the presence of total current branching in high electron mobility transistor and field-effect transistor channels. J. Stat. Mech Theory Exp. 2009(01), 01047 (2009)

    Article  Google Scholar 

  3. Dyakonov, M., Shur, M.: Plasma wave electronics: novel terahertz devices using two dimensional electron fluid. IEEE Trans. Electron. Devices 43, 1640–1645 (1996)

  4. Millithaler, J.-F., Reggiani, L., Pousset, J., Varani, L., Palermo, C., Knap, W., Matéos, J., González, T., Pérez, S., Pardo, D.: Monte Carlo investigation of terahertz plasma oscillations in ultrathin layers of n-type \(\text{ In }_{0.53}\text{ Ga }_{0.47}\)As. Appl. Phys. Lett. 92, 042113 (2008)

    Article  Google Scholar 

  5. Nouvel, P., Torres, J., Blin, S., Marinchio, H., Laurent, T., Palermo, C., Varani, L., Shiktorov, P., Starikov, E., Gružinskis, V., Teppe, F., Roelens, Y., Shchepetov, A., Bollaert, S.: TeraHertz emission induced by optical beating in nanometer-length field-effect transistors. J. Appl. Phys. 111, 103707 (2012)

    Article  Google Scholar 

  6. Nouvel, P., Marinchio, H., Torres, J., Palermo, C., Gasquet, D., Chusseau, L., Varani, L., Shiktorov, P., Starikov, E., Gružinskis, V.: Terahertz spectroscopy of optically excited resonant plasma waves in high electron mobility transistor. J. Appl. Phys. 106, 013717 (2009)

    Article  Google Scholar 

  7. Marinchio, H., Chusseau, L., Torres, J., Nouvel, P., Varani, L., Sabatini, G., Palermo, C., Shiktorov, P., Starikov, E., Gružinskis, V.: Room-temperature terahertz mixer based on the simultaneous electronic and optical excitations of plasma waves in a field effect transistor. Appl. Phys. Lett. 96, 013502 (2010)

    Article  Google Scholar 

  8. Marinchio, H., Palermo, C., Sabatini, G., Varani, L., Shiktorov, P., Starikov, E., Gružinskis, V.: Pseudo-two-dimensional Poisson equation for the modeling of field-effect transistors. J. Comput. Electron. 9(3–4), 141–145 (2010)

    Article  Google Scholar 

  9. Shiktorov, P., Starikov, E., Gružinskis, V., Pérez, S., González, T., Reggiani, L., Varani, L., Vaissière, J.C.: Upconversion of partition noise in semiconductors operating under periodic large-signal conditions. Phys. Rev. B 67, 165201 (2003)

    Article  Google Scholar 

  10. Torres, J., Marinchio, H., Nouvel, P., Sabatini, G., Palermo, C., Varani, L., Chusseau, L., Shiktorov, P., Starikov, E., Gružinskis, V.: Plasma waves subterahertz optical beating detection and enhancement in long-channel high-electron-mobility transistors: experiments and modeling. IEEE J. Select. Top. Quant. Electron. 14, 491 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by Grant No. MIP-058/2013 of the Research council of Lithuania. The support of TeraLab-Montpellier is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Palermo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palermo, C., Marinchio, H., Shiktorov, P. et al. TeraHertz electronic noise in field-effect transistors. J Comput Electron 14, 87–93 (2015). https://doi.org/10.1007/s10825-014-0657-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0657-x

Keywords

Navigation