Journal of Computational Electronics

, Volume 14, Issue 1, pp 280–287 | Cite as

A full-range dual material gate tunnel field effect transistor drain current model considering both source and drain depletion region band-to-band tunneling

  • Pratyush Pandey
  • Rajat Vishnoi
  • M. Jagadesh Kumar


In this paper, a 2-D analytical model for the drain current of a dual material gate tunneling field-effect transistor is developed incorporating the effects of source and drain depletion regions. The model can forecast the effects of drain voltage, gate work function, oxide thickness, and silicon film thickness. The proposed model gives analytical expressions for the surface potential, electric field and the band to band generation rate which is numerically integrated to give the drain current. More importantly, our model accurately predicts the ambipolar current and the effects of drain voltage in the saturation region. A semi-empirical approach is used to model the transition from the linear to the saturation region, leading to an infinitely differentiable characteristics. The model is shown to be scalable down to a gate length of 50 nm. The model validation is carried out by a comparison with 2-D numerical simulations.


Analytical modeling Band to band tunneling Poisson equation Ambipolar current Dual material gate (DMG) Tunneling field-effect transistor (TFET) 


  1. 1.
    Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)CrossRefGoogle Scholar
  2. 2.
    Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices 56(3), 456–465 (2009)CrossRefGoogle Scholar
  3. 3.
    Toh, E.-H., Wang, G.H., Samudra, G., Yeo, Y.C.: Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J. Appl. Phys. 103(10), 104504-1–104504-5 (2008)CrossRefGoogle Scholar
  4. 4.
    Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)CrossRefGoogle Scholar
  5. 5.
    Saurabh, S., Kumar, M.J.: Estimation and compensation of process induced variations in nanoscale tunnel field effect transistors (TFETs) for improved reliability. IEEE Trans. Device Mater. Rel. 10(3), 390–395 (2010)CrossRefGoogle Scholar
  6. 6.
    Ram, M.S., Abdi, D.B.: Single Grain boundary tunnel field effect transistors on recrystallized polycrystalline silicon: proposal and investigation. IEEE Electron Device Lett. 35(10), 989–991 (2014)CrossRefGoogle Scholar
  7. 7.
    Appenzeller, J., Lin, Y.-M., Knoch, J., Avouris, P.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93(19), 196805-1 (2004)CrossRefGoogle Scholar
  8. 8.
    ITRS, Denver, CO, USA: International technology roadmap for semiconductors [Online]. (2013)
  9. 9.
    Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-\(k\) gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRefGoogle Scholar
  10. 10.
    Boucart, K., Ionescu, A.M.: A new definition of threshold voltage in tunnel FETs. Solid State Electron. 52(9), 1318–1323 (2008)CrossRefGoogle Scholar
  11. 11.
    Saurabh, S., Kumar, M.J.: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2011)CrossRefGoogle Scholar
  12. 12.
    Shih, C.-H., Chien, N.D.: Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction. IEEE Electron Device Lett. 32(11), 1498–1500 (2011)CrossRefGoogle Scholar
  13. 13.
    Villalon, A., Royer, C.L., et al.: First demonstration of strained SiGe nanowires TFETs with ION beyond \(700 \mu \text{ A }/\mu \text{ m }\), Symposium on VLSI Tech., pp. 1–2. Honolulu, (2014)Google Scholar
  14. 14.
    Zhang, A., Mei, J., Zhang, L., He, H., He, J., Chan, M.: Numerical study on dual material gate nanowire tunnel field-effect transistor. In: Proceedings IEEE International Conference EDSSC, pp. 1–5 (2012)Google Scholar
  15. 15.
    Cui, N., Liang, R., Xu, J.: Heteromaterial gate tunnel field effect transistor with lateral energy band profile modulation. Appl. Phys. Lett. 98(14), 142105-1–142105-3 (2011)CrossRefGoogle Scholar
  16. 16.
    Lou, H., Zhang, L., Zhu, Y., Lin, X., Yang, S., He, J., Chan, M.: A junctionless nanowire transistor with a dual-material gate. IEEE Trans. Electron Devices 59(7), 1829–1836 (2012)CrossRefGoogle Scholar
  17. 17.
    Lee, M.J., Choi, W.Y.: Effects of device geometry on hetero-gate-dielectric tunneling field-effect transistors. IEEE Electron Device Lett. 33(10), 1459–1461 (2012)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Fan, M.-L., Hu, V.P., Chen, Y.-N., Su, P., Chuang, C.-T.: Analysis of single-trap-induced random telegraph noise and its interaction with work function variation for tunnel FET. IEEE Trans. Electron Devices 60(6), 2038–2044 (2013)CrossRefGoogle Scholar
  19. 19.
    Vandenberghe, W.G., Verhulst, A.S., Groeseneken, G., Soree, B., Magnus, W.: Analytical model for tunnel field-effect transistors. In: Proceedings \(14^{{\rm th}}\) IEEE Mediterranean Electrotech. Conference, pp. 923–928 (2008)Google Scholar
  20. 20.
    Verhulst, A.S., Leoneli, D., Rooyackers, R., Groeseneken, G.: Drain voltage dependent analytical model of tunnel field-effect transistors. J. Appl. Phys. 110(2), 024510-1–024510-10 (2011)CrossRefGoogle Scholar
  21. 21.
    Lee, M., Choi, W.: Analytical model of single-gate silicon-on-insulator tunneling field-effect transistors. Solid State Electron. 63(1), 110–114 (2011)CrossRefGoogle Scholar
  22. 22.
    Wan, J., Royer, C.L., Zaslavsky, A., Cristoloveanu, S.: A tunneling field effect transistor model combining interband tunneling with channel transport. J. Appl. Phys. 110(10), 104503-1–104503-7 (2011)CrossRefGoogle Scholar
  23. 23.
    Vishnoi, R., Kumar, M.J.: Compact analytical drain current model of gate-all-around nanowire tunneling FET. IEEE Trans. Electron Devices 61(7), 2599–2603 (2014)CrossRefGoogle Scholar
  24. 24.
    Liu, L., Mohanta, D., Datta, S.: Scaling length theory of double-gate interband tunnel field-effect transistors. IEEE Trans. Electron Devices 59(4), 902–908 (2012)CrossRefGoogle Scholar
  25. 25.
    Shen, C., Ong, S.-L., Heng, C.-H., Samudra, G., Yeo, Y.-C.: A variational approach to the two-dimensional nonlinear Poisson’s equation for the modeling of tunneling transistors. IEEE Electron Dev. Lett. 29(11), 1252–1255 (2008)CrossRefGoogle Scholar
  26. 26.
    Vishnoi, R., Kumar, M.J.: Compact analytical model of dual material gate tunneling field effect transistor using interband tunneling and channel transport. IEEE Trans. Electron Devices 61(6), 1936–1942 (2014)CrossRefGoogle Scholar
  27. 27.
    Vishnoi, R., Kumar, M.J.: A pseudo-2D analytical model of dual material gate all-around nanowire tunneling FET. IEEE Trans. Electron Devices 61(7), 2264–2270 (2014)CrossRefGoogle Scholar
  28. 28.
    ATLAS Device Simulation Software, Silvaco Int., Santa Clara, CA, USA (2014)Google Scholar
  29. 29.
    Kane, E.O.: Zener tunneling in semiconductors. J. Phys. Chem. Solids 12(2), 181–188 (1960)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Young, K.K.: Short-channel effect in fully depleted SOI-MOSFETs. IEEE Trans. Electron Devices 40(10), 1812–1817 (1993)CrossRefGoogle Scholar
  31. 31.
    Kamchouchi, H., Zaky, A.: A direct method for the edge capacitance of thick electrodes. J. Phys. D 8, 1365–1371 (1975)CrossRefGoogle Scholar
  32. 32.
    Lin, S., Kuo, J.: Modeling the fringing electric field effect on the threshold voltage of FD SOI nMOS devices with the LDD/sidewall oxide spacer structure. IEEE Trans. Electron Devices 50(12), 2559–2564 (2003)CrossRefGoogle Scholar
  33. 33.
    Kumar, M.J., Gupta, S.K., Venkataraman, V.: Compact modeling of parasitic internal fringe capacitance effects on the threshold voltage of high-k gate dielectric nanoscale SOI MOSFETs. IEEE Trans. Electron Devices 53(4), 706–711 (2006)Google Scholar
  34. 34.
    Lee, M.S.L., Tenbroek, B.N., Redman-White, W., Benson, J., Uren, M.J.: A physically based compact model of partially depleted SOI MOSFETs for analog circuit simulation. IEEE J. Solid State Circuits 36(1), 110–121 (2001)CrossRefGoogle Scholar
  35. 35.
    Agarwal, P., Saraswat, G., Kumar, M.J.: Compact surface potential model for FD SOI MOSFET considering substrate depletion region. IEEE Trans. Electron Dev. 55(3), 789–795 (2008)CrossRefGoogle Scholar
  36. 36.
    Sze, S.: Physics of Semiconductor Devices. Wiley, New York (1981)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pratyush Pandey
    • 1
  • Rajat Vishnoi
    • 1
  • M. Jagadesh Kumar
    • 1
  1. 1.Indian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations