Advertisement

Journal of Computational Electronics

, Volume 14, Issue 1, pp 146–150 | Cite as

Physical model for electroforming process in valence change resistive random access memory

  • Pengxiao Sun
  • Ling Li
  • Nianduan Lu
  • Hangbing Lv
  • Ming Liu
  • Su Liu
Article

Abstract

A physical model is developed for electroforming process in valence change resistive random access memory. In the developed model, electric field- and temperature-dependent vacancy generation, drift/diffusion in the forming process are considered. Based on the proposed model, the intrinsic nature of pulse amplitude dependence of forming time is attributed to combined effects of vacancy generation and migration. The evolution of microscopic vacancy concentration during forming operation is calculated and the effect of vacancy migration on forming process is quantitatively evaluated. The simulated pulse amplitude dependence of forming time agrees well with the experimental data.

Keywords

Valence change memory (VCM) Physical model Electroforming process Vacancy migration Hopping transport 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61306117, 61322408, 61221004, 61334007, 61274091, 61106119, and 61106082) and the National Basic Research Program of China (973 Program) (Grant No. 2010CB934200 and 2011CBA00602) and National High Technology Research and Development Program (863 Program) (Grant No. 2014AA032900, 2011AA010401 and 2011AA010402)

References

  1. 1.
    Zuo, Q., Long, S., Liu, Q., Zhang, S., Wang, Q., Li, Y., Wang, Y., Liu, M.: Self-rectifying effect in gold nanocrystal-embedded zirconium oxide resistive memory. J. Appl. Phys. 106(7), 073,724 (2009)CrossRefGoogle Scholar
  2. 2.
    Lv, H., Li, Y., Liu, Q., Long, S., Li, L., Liu, M.: Self-rectifying resistive-switching device with a-Si/WO\(_3\) bilayer. IEEE Electron Device Lett. 34(2), 229–231 (2013)CrossRefGoogle Scholar
  3. 3.
    Xu, N., Liu, L., Sun, X., Liu, X., Han, D., Wang, Y., Han, R., Kang, J., Yu, B.: Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories. Appl. Phys. Lett. 92(23), 232,112 (2008)CrossRefGoogle Scholar
  4. 4.
    Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L.: Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56(2), 186–192 (2009)CrossRefGoogle Scholar
  5. 5.
    Yu, S., Chen, Y.Y., Guan, X., Wong, H.S.P., Kittl, J.A.: A monte carlo study of the low resistance state retention of HfO\(_{x}\) based resistive switching memory. Appl. Phys. Lett. 100(4), 043,507 (2012)CrossRefGoogle Scholar
  6. 6.
    Chen, A.: Area and thickness scaling of forming voltage of resistive switching memories. IEEE Electron Device Lett. 35(1), 57–59 (2014)CrossRefGoogle Scholar
  7. 7.
    Chae, S.C., Lee, J.S., Kim, S., Lee, S.B., Chang, S.H., Liu, C., Kahng, B., Shin, H., Kim, D.W., Jung, C.U., et al.: Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20(6), 1154–1159 (2008)CrossRefGoogle Scholar
  8. 8.
    Lee, S., Yoo, H., Chang, S., Gao, L., Kang, B., Lee, M.J., Kim, C., Noh, T.: Time-dependent current-voltage curves during the forming process in unipolar resistance switching. Appl. Phys. Lett. 98(5), 053,503 (2011)CrossRefGoogle Scholar
  9. 9.
    Kwon, D.H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., Li, X.S., Park, G.S., Lee, B., Han, S., et al.: Atomic structure of conducting nanofilaments in TiO\(_2\) resistive switching memory. Nat. Nanotechnol. 5(2), 148–153 (2010)CrossRefGoogle Scholar
  10. 10.
    Guan, X., Yu, S., Wong, H.S.: On the switching parameter variation of metal-oxide RRAM part I: Physical modeling and simulation methodology. IEEE Trans. Electron Devices 59(4), 1172–1182 (2012)CrossRefGoogle Scholar
  11. 11.
    Tian, H., Chen, H.Y., Gao, B., Yu, S., Liang, J., Yang, Y., Xie, D., Kang, J., Ren, T.L., Zhang, Y., et al.: Monitoring oxygen movement by raman spectroscopy of resistive random access memory with a graphene-inserted electrode. Nano Lett. 13(2), 651–657 (2013)CrossRefGoogle Scholar
  12. 12.
    Chen, C., Song, C., Yang, J., Zeng, F., Pan, F.: Oxygen migration induced resistive switching effect and its thermal stability in W/TaO\(_x\)/Pt structure. Appl. Phys. Lett. 100(25), 253,509 (2012)CrossRefGoogle Scholar
  13. 13.
    Ielmini, D.: Modeling the universal set/reset characteristics of bipolar RRAM by field-and temperature-driven filament growth. IEEE Trans. Electron Devices 58(12), 4309–4317 (2011)CrossRefGoogle Scholar
  14. 14.
    Long, S., Cagli, C., Ielmini, D., Liu, M., Suñé, J.: Analysis and modeling of resistive switching statistics. J. Appl. Phys. 111(7), 074,508 (2012)CrossRefGoogle Scholar
  15. 15.
    Yu, S., Wong, H.S.: A phenomenological model for the reset mechanism of metal oxide RRAM. IEEE Electron Device Lett. 31(12), 1455–1457 (2010)Google Scholar
  16. 16.
    Stathis, J.: Percolation models for gate oxide breakdown. J. Appl. Phys. 86(10), 5757–5766 (1999)CrossRefGoogle Scholar
  17. 17.
    Joo, J.H., Seon, J.M., Jeon, Y.C., Oh, K.Y., Roh, J.S., Kim, J.J.: Improvement of leakage currents of Pt/(Ba, Sr) TiO\(_{3}\)/Pt capacitors. Appl. Phys. lett. 70(22), 3053–3055 (1997)CrossRefGoogle Scholar
  18. 18.
    Lloyd, J., Liniger, E., Shaw, T.: Simple model for time-dependent dielectric breakdown in inter-and intralevel low-k dielectrics. J. Appl. Phys. 98(8), 084,109 (2005)CrossRefGoogle Scholar
  19. 19.
    Kimura, M.: Field and temperature acceleration model for time-dependent dielectric breakdown. IEEE Trans. Electron Devices 46(1), 220–229 (1999)CrossRefGoogle Scholar
  20. 20.
    Last, B., Thouless, D.: Percolation theory and electrical conductivity. Phys. Rev. Lett. 27, 1719–1721 (1971)CrossRefGoogle Scholar
  21. 21.
    Essam, J.W.: Percolation theory. Rep. Prog. Phys. 43(7), 833 (1980)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Larentis, S., Cagli, C., Nardi, F., Ielmini, D.: Filament diffusion model for simulating reset and retention processes in RRAM. Microelectron. Eng. 88(7), 1119–1123 (2011)CrossRefGoogle Scholar
  23. 23.
    Karg, S., Meijer, G., Widmer, D., Bednorz, J.: Electrical-stress-induced conductivity increase in SrTiO\(_{3}\) films. Appl. Phys. Lett. 89(7), 072,106–072,106 (2006)CrossRefGoogle Scholar
  24. 24.
    Calvani, P., Capizzi, M., Donato, F., Lupi, S., Maselli, P., Peschiaroli, D.: Observation of a midinfrared band in SrTiO\(_{3-y}\). Phys. Rev. B 47(14), 8917 (1993)CrossRefGoogle Scholar
  25. 25.
    Waser, R., Baiatu, T., Härdtl, K.H.: DC electrical degradation of perovskite-type titanates: Ii, single crystals. J. Am. Ceram. Soc. 73(6), 1654–1662 (1990)CrossRefGoogle Scholar
  26. 26.
    Ohly, C., Hoffmann-Eifert, S., Guo, X., Schubert, J., Waser, R.: Electrical conductivity of epitaxial SrTiO\(_{3}\) thin films as a function of oxygen partial pressure and temperature. J. Am. Ceram. Soc. 89(9), 2845–2852 (2006)CrossRefGoogle Scholar
  27. 27.
    Herranz, G., Basletic, M., Copie, O., Bibes, M., Khodan, A., Carrétéro, C., Tafra, E., Jacquet, E., Bouzehouane, K., Hamzic, A., et al.: Controlling high-mobility conduction in SrTiO\(_{3}\) by oxide thin film deposition. Appl. Phys. Lett. 94(1), 012,113–012,113 (2009)CrossRefGoogle Scholar
  28. 28.
    Wang, R.V., McIntyre, P.C.: \(^{18}\)O tracer diffusion in Pb(Zr, Ti)O\(_{3}\) thin films: a probe of local oxygen vacancy concentration. J. Appl. Phys. 97(2), 023,508 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pengxiao Sun
    • 1
    • 2
  • Ling Li
    • 1
  • Nianduan Lu
    • 1
  • Hangbing Lv
    • 1
  • Ming Liu
    • 1
  • Su Liu
    • 2
  1. 1.Laboratory of Nano-fabrication and Novel Devices Integrated TechnologyInstitute of Microelectronics, Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Institute of Microelectronics, School of Physical Science and TechnologyLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations