Skip to main content
Log in

Physical model for electroforming process in valence change resistive random access memory

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A physical model is developed for electroforming process in valence change resistive random access memory. In the developed model, electric field- and temperature-dependent vacancy generation, drift/diffusion in the forming process are considered. Based on the proposed model, the intrinsic nature of pulse amplitude dependence of forming time is attributed to combined effects of vacancy generation and migration. The evolution of microscopic vacancy concentration during forming operation is calculated and the effect of vacancy migration on forming process is quantitatively evaluated. The simulated pulse amplitude dependence of forming time agrees well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zuo, Q., Long, S., Liu, Q., Zhang, S., Wang, Q., Li, Y., Wang, Y., Liu, M.: Self-rectifying effect in gold nanocrystal-embedded zirconium oxide resistive memory. J. Appl. Phys. 106(7), 073,724 (2009)

    Article  Google Scholar 

  2. Lv, H., Li, Y., Liu, Q., Long, S., Li, L., Liu, M.: Self-rectifying resistive-switching device with a-Si/WO\(_3\) bilayer. IEEE Electron Device Lett. 34(2), 229–231 (2013)

    Article  Google Scholar 

  3. Xu, N., Liu, L., Sun, X., Liu, X., Han, D., Wang, Y., Han, R., Kang, J., Yu, B.: Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories. Appl. Phys. Lett. 92(23), 232,112 (2008)

    Article  Google Scholar 

  4. Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L.: Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56(2), 186–192 (2009)

    Article  Google Scholar 

  5. Yu, S., Chen, Y.Y., Guan, X., Wong, H.S.P., Kittl, J.A.: A monte carlo study of the low resistance state retention of HfO\(_{x}\) based resistive switching memory. Appl. Phys. Lett. 100(4), 043,507 (2012)

    Article  Google Scholar 

  6. Chen, A.: Area and thickness scaling of forming voltage of resistive switching memories. IEEE Electron Device Lett. 35(1), 57–59 (2014)

    Article  Google Scholar 

  7. Chae, S.C., Lee, J.S., Kim, S., Lee, S.B., Chang, S.H., Liu, C., Kahng, B., Shin, H., Kim, D.W., Jung, C.U., et al.: Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20(6), 1154–1159 (2008)

    Article  Google Scholar 

  8. Lee, S., Yoo, H., Chang, S., Gao, L., Kang, B., Lee, M.J., Kim, C., Noh, T.: Time-dependent current-voltage curves during the forming process in unipolar resistance switching. Appl. Phys. Lett. 98(5), 053,503 (2011)

    Article  Google Scholar 

  9. Kwon, D.H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., Li, X.S., Park, G.S., Lee, B., Han, S., et al.: Atomic structure of conducting nanofilaments in TiO\(_2\) resistive switching memory. Nat. Nanotechnol. 5(2), 148–153 (2010)

    Article  Google Scholar 

  10. Guan, X., Yu, S., Wong, H.S.: On the switching parameter variation of metal-oxide RRAM part I: Physical modeling and simulation methodology. IEEE Trans. Electron Devices 59(4), 1172–1182 (2012)

    Article  Google Scholar 

  11. Tian, H., Chen, H.Y., Gao, B., Yu, S., Liang, J., Yang, Y., Xie, D., Kang, J., Ren, T.L., Zhang, Y., et al.: Monitoring oxygen movement by raman spectroscopy of resistive random access memory with a graphene-inserted electrode. Nano Lett. 13(2), 651–657 (2013)

    Article  Google Scholar 

  12. Chen, C., Song, C., Yang, J., Zeng, F., Pan, F.: Oxygen migration induced resistive switching effect and its thermal stability in W/TaO\(_x\)/Pt structure. Appl. Phys. Lett. 100(25), 253,509 (2012)

    Article  Google Scholar 

  13. Ielmini, D.: Modeling the universal set/reset characteristics of bipolar RRAM by field-and temperature-driven filament growth. IEEE Trans. Electron Devices 58(12), 4309–4317 (2011)

    Article  Google Scholar 

  14. Long, S., Cagli, C., Ielmini, D., Liu, M., Suñé, J.: Analysis and modeling of resistive switching statistics. J. Appl. Phys. 111(7), 074,508 (2012)

    Article  Google Scholar 

  15. Yu, S., Wong, H.S.: A phenomenological model for the reset mechanism of metal oxide RRAM. IEEE Electron Device Lett. 31(12), 1455–1457 (2010)

  16. Stathis, J.: Percolation models for gate oxide breakdown. J. Appl. Phys. 86(10), 5757–5766 (1999)

    Article  Google Scholar 

  17. Joo, J.H., Seon, J.M., Jeon, Y.C., Oh, K.Y., Roh, J.S., Kim, J.J.: Improvement of leakage currents of Pt/(Ba, Sr) TiO\(_{3}\)/Pt capacitors. Appl. Phys. lett. 70(22), 3053–3055 (1997)

    Article  Google Scholar 

  18. Lloyd, J., Liniger, E., Shaw, T.: Simple model for time-dependent dielectric breakdown in inter-and intralevel low-k dielectrics. J. Appl. Phys. 98(8), 084,109 (2005)

    Article  Google Scholar 

  19. Kimura, M.: Field and temperature acceleration model for time-dependent dielectric breakdown. IEEE Trans. Electron Devices 46(1), 220–229 (1999)

    Article  Google Scholar 

  20. Last, B., Thouless, D.: Percolation theory and electrical conductivity. Phys. Rev. Lett. 27, 1719–1721 (1971)

    Article  Google Scholar 

  21. Essam, J.W.: Percolation theory. Rep. Prog. Phys. 43(7), 833 (1980)

    Article  MathSciNet  Google Scholar 

  22. Larentis, S., Cagli, C., Nardi, F., Ielmini, D.: Filament diffusion model for simulating reset and retention processes in RRAM. Microelectron. Eng. 88(7), 1119–1123 (2011)

    Article  Google Scholar 

  23. Karg, S., Meijer, G., Widmer, D., Bednorz, J.: Electrical-stress-induced conductivity increase in SrTiO\(_{3}\) films. Appl. Phys. Lett. 89(7), 072,106–072,106 (2006)

    Article  Google Scholar 

  24. Calvani, P., Capizzi, M., Donato, F., Lupi, S., Maselli, P., Peschiaroli, D.: Observation of a midinfrared band in SrTiO\(_{3-y}\). Phys. Rev. B 47(14), 8917 (1993)

    Article  Google Scholar 

  25. Waser, R., Baiatu, T., Härdtl, K.H.: DC electrical degradation of perovskite-type titanates: Ii, single crystals. J. Am. Ceram. Soc. 73(6), 1654–1662 (1990)

    Article  Google Scholar 

  26. Ohly, C., Hoffmann-Eifert, S., Guo, X., Schubert, J., Waser, R.: Electrical conductivity of epitaxial SrTiO\(_{3}\) thin films as a function of oxygen partial pressure and temperature. J. Am. Ceram. Soc. 89(9), 2845–2852 (2006)

    Article  Google Scholar 

  27. Herranz, G., Basletic, M., Copie, O., Bibes, M., Khodan, A., Carrétéro, C., Tafra, E., Jacquet, E., Bouzehouane, K., Hamzic, A., et al.: Controlling high-mobility conduction in SrTiO\(_{3}\) by oxide thin film deposition. Appl. Phys. Lett. 94(1), 012,113–012,113 (2009)

    Article  Google Scholar 

  28. Wang, R.V., McIntyre, P.C.: \(^{18}\)O tracer diffusion in Pb(Zr, Ti)O\(_{3}\) thin films: a probe of local oxygen vacancy concentration. J. Appl. Phys. 97(2), 023,508 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61306117, 61322408, 61221004, 61334007, 61274091, 61106119, and 61106082) and the National Basic Research Program of China (973 Program) (Grant No. 2010CB934200 and 2011CBA00602) and National High Technology Research and Development Program (863 Program) (Grant No. 2014AA032900, 2011AA010401 and 2011AA010402)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, P., Li, L., Lu, N. et al. Physical model for electroforming process in valence change resistive random access memory. J Comput Electron 14, 146–150 (2015). https://doi.org/10.1007/s10825-014-0634-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0634-4

Keywords

Navigation