Journal of Computational Electronics

, Volume 13, Issue 2, pp 515–528 | Cite as

Piezoresistance effect in n-type silicon: from bulk to nanowires

  • S. I. Kozlovskiy
  • N. N. Sharan


The first order piezoresistance coefficients are examined in the n-type silicon structures with different dimensionality of electron gas: bulk crystal, quantum film (well) and quantum wire. The detail research involves quantum kinetic approach to calculation of the kinetic coefficients (conductivity, mobility, concentration) of electrons in the strained and unstrained states. As scattering system were adopted ionized impurities, longitudinal acoustic phonons and surface roughness. Detailed studies have been carried out for dependences of electron mobility and piezoresistance coefficients on confining dimensions. An alternative explanation is proposed for origin of the giant piezoresistance effect in n-type silicon nanostructures. Comparison of the obtained results shows not only qualitative but even sufficient quantitative agreement with experimental data.


Piezoresistance coefficients n-Type silicon Bulk material Quantum film Quantum wire 



Authors would like to thank to Dr. Umesh Bhaskar for valuable help.


  1. 1.
    He, R.R., Yang, P.D.: Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1, 42–46 (2006)CrossRefGoogle Scholar
  2. 2.
    Yang, Y., Li, X.: Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement. Nanotechnology 22, 015501 (2011)CrossRefGoogle Scholar
  3. 3.
    Kang, T.-K.: Evidence for giant piezoresistance effect in n-type silicon nanowire field-effect transistors. Appl. Phys. Lett. 100, 163501 (2012)CrossRefGoogle Scholar
  4. 4.
    Yang, Y., Li, X.: Giant piezoresistance measured in n-type nanothick Si layer that has interface with SiO\(_{2}\). Electron Device Lett. IEEE 32, 411–413 (2011)CrossRefGoogle Scholar
  5. 5.
    Boiko, I.I.: Kinetics of Electron Gas Interacting with Fluctuating Potential. Naukova Dumka, Kiev (1993). (in Russian)Google Scholar
  6. 6.
    Boiko, I.I., Sirenko, YuM, Vasilopoulos, P.: Dielectric formalism for a quasi-one-dimensional electron gas. I. Quantum transport equation. Phys. Rev. B 43, 7216–7223 (1991)CrossRefGoogle Scholar
  7. 7.
    Boiko, I.I., Sirenko, YuM, Vasilopoulos, P.: Dielectric formalism for a quasi-one-dimensional electron gas. II. Dielectric functions and potential correliators. Phys. Rev. B 43, 7224–7230 (1991)CrossRefGoogle Scholar
  8. 8.
    Boiko, I.I.: Transport of carriers in semiconductors. In: Lashkaryov, V. (ed.) Institute of Semiconductor Physics, NAS of Ukraine, Kyiv (2009) (in Russian)Google Scholar
  9. 9.
    Boiko, I.I., Kozlovskiy, S.I.: Investigation of conductivity and piezoresistance of n-type silicon on basis of quantum kinetic equation and model distribution function. Sens. Actuat. A 147, 17–33 (2008)CrossRefGoogle Scholar
  10. 10.
    Ferry, D.K., Goodnick, S.M., Bird, J.: Transport in Nanostructures. Cambridge University Press, Cambridge (2009)Google Scholar
  11. 11.
    Neophytou, N., Paul, A., Lundstrom, M.S., Klimeck, G.: Bandstructure effects in silicon nanowire electron transport. IEEE Trans. Electron Devices 55, 1286–1297 (2008)CrossRefGoogle Scholar
  12. 12.
    Sun, Y., Thompson, S.E., Nishida, T.: Strain Effect in Semiconductors. Theory and Device Applications. Springer, New York (2010)CrossRefGoogle Scholar
  13. 13.
    Esseni, D., Palestri, P., Selmi, L.: Nanoscale MOS Transistors. Semi-classical Transport and Applications. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  14. 14.
    Maiti, C.K., Chattopadhyay, S., Bera, L.K.: Strained-Si Heterostructure Field Effect Devices. Taylor & Francis, New York (2007)CrossRefGoogle Scholar
  15. 15.
    Maegawa, T., Yamauchi, T., Hara, T., Tsuchiya, H.: Strain effects on electronic band structures in nanoscaled silicon: from bulk to nanowire. IEEE Trans. ED 56, 553–559 (2009)CrossRefGoogle Scholar
  16. 16.
    Tavger, B.A., Demikhovskii, V. Y.: Quantum size effects in semiconducting and semimetallic films. Sov. Phys. Usp. 11, 644–658 (1969)Google Scholar
  17. 17.
    Datta, S.: Electronic transport in mesoscopic systems. In: Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, vol. 3. Cambridge University Press, Cambridge (1995)Google Scholar
  18. 18.
    Knezevic, I., Ramayya, E.B., Vasileska, D., Goodnick, S.M.: Diffusive transport in quasi-2D and quasi-1D electron systems. J. Comput. Theor. Nanosci. 6, 1725–1753 (2009)CrossRefGoogle Scholar
  19. 19.
    Sverdlov, V.: Strain-Induced Effects in Advanced MOSFETs. Springer, Wien (2011)CrossRefGoogle Scholar
  20. 20.
    Blakemore, J.S.: Semiconductor Statistics. Pergamon Press, New York (1962)MATHGoogle Scholar
  21. 21.
    Arora, V.K.: Quantum size effect in thin-wire transport. Phys. Rev. B 23, 5611–5612 (1981)CrossRefGoogle Scholar
  22. 22.
    Lee, J., Spector, H.N.: Impurity-limited mobility of semiconducting thin wire. J. Appl. Phys. 54, 3921–3925 (1983)CrossRefGoogle Scholar
  23. 23.
    Yu, P.Y., Cardona, M.: Fundamentals of Semiconductors. Physics and Material Properties. Springer, New York (2002)Google Scholar
  24. 24.
    Fischetti, M.V., Laux, S.E.: Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234 (1996)Google Scholar
  25. 25.
    Lim, J.-S., Yang, X., Nishida, T., Thompson, S.E.: Measurement of conduction band deformation potential constants using gate direct tunneling current in n-type metal oxide semiconductor field effect transistors under mechanical stress. Appl. Phys. Lett. 89, 073509 (2006)CrossRefGoogle Scholar
  26. 26.
    Smith, C.S.: Piezoresistance effect in germanium and silicon. Phys. Rev. 93, 42–49 (1954)CrossRefGoogle Scholar
  27. 27.
    Schroder, K.: Semiconductor Material and Device Characterization. Wiley, New York (2005)CrossRefGoogle Scholar
  28. 28.
    Heinzel, Th: Mesoscopic Electronics in Solid State Nanostructures. Wiley-VCH. Verlag GmbH & Co., Weinheim (2007)Google Scholar
  29. 29.
    Colinge, J.-P., Colinge, C.-A.: Physics of Semiconductor Devices. Kluwer Academic publishers, New York (2002)Google Scholar
  30. 30.
    Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices. Cambridge University Press, Cambridge (2009)Google Scholar
  31. 31.
    Chu, M., Nishida, T., Lv, X., Mohta, N., Thompson, S.E.: Comparison between high-field piezoresistance coefficients of Si metal-oxide-semiconductor field-effect transistors and bulk Si under uniaxial and biaxial stress. J. Appl. Phys. 103, 113704 (2008)CrossRefGoogle Scholar
  32. 32.
    Jin, S., Fischetti, M.V., Tang, T.-W.: Modeling of electron mobility in gated silicon nanowires at room temperature: surface roughness scattering, dielectric screening and band nonparabolicity. J. Appl. Phys. 102, 083715 (2007)CrossRefGoogle Scholar
  33. 33.
    Ramayya, E.B., Vasileska, D., Goodnick, S.M., Knezevic, I.: Electron transport in silicon nanowires: the role of acoustic phonon confinement and surface roughness scattering. J. Appl. Phys. 104, 063711 (2008)Google Scholar
  34. 34.
    Sekaric, L., Gunawan, O., Majumdar, A., Liu, X.H., Weinstein, D., Sleight, J.W.: Size-dependent modulation of carrier mobility in top–down fabricated silicon nanowires. Appl. Phys. Lett. 95, 023113 (2009)CrossRefGoogle Scholar
  35. 35.
    Lee, J., Vassell, M.O.: Low-field electron transport in quasi-one-dimensional semiconducting structures. J. Phys. C 17, 2525 (1984)Google Scholar
  36. 36.
    Fishman, G.: Phonon-limited mobility in a quasi-one-dimensional semiconductor. Phys. Rev. B 36, 7448–7456 (1987)CrossRefGoogle Scholar
  37. 37.
    Ridly, B.K.: Quantum Processes in Semiconductors. Clarendon Press, Oxford (1982)Google Scholar
  38. 38.
    Boiko, I.I.: Transport phenomena of two-dimensional band carriers with Dirac-like energetic spectrum. Semiconductor Physics, Quantum Electronics and Optoelectronics 15, 129–138 (2012)Google Scholar
  39. 39.
    Haug, H., Koch, S.W.: Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific Publishing, Singapore (2004)CrossRefGoogle Scholar
  40. 40.
    Giuliani, G., Vignale, G.: Quantum Theory of the Electron Liquid. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  41. 41.
    Taş, M., Tomak, M.: Short-range correlations in a one-dimensional electron gas. Phys. Rev. B 67, 235314 (2003)CrossRefGoogle Scholar
  42. 42.
    Devis, J.H.: The Physics of Low-dimensional Semiconductors. Cambridge University Press, Cambridge (1998)Google Scholar
  43. 43.
    Lundstrom, M.: Fundamentals of Carrier Transport. Cambridge University Press, Cambridge (2009)Google Scholar
  44. 44.
    Li, M., Wu, J.J., Han, X.X., Lu, Y.W., Liu, X.L., Zhu, Q.S., Wang, Z.G.: A model for scattering due to interface roughness in finite quantum wells. Semicond. Sci. Technol. 20, 207–1212 (2005)Google Scholar
  45. 45.
    Gantmakher, V.F., Levinson, Y.B.: Carrier Scattering in Metals and Semiconductors. Elsevier Science Publishers B.V., Amsterdam (1987)Google Scholar
  46. 46.
    Pirovano, A., Lacaita, A.L., Zandler, G., Oberhuber, R.: Explaining the dependences of the hole and electron mobilities in Si inversion layers. IEEE Trans. ED 47, 718–724 (2000)CrossRefGoogle Scholar
  47. 47.
    Goodnick, S.M., Ferry, D.K., Wilmsen, C.W., Liliental, Z., Fathy, D., Krivanek, O.L.: Surface roughness at the Si(100)–SiO\(_{2}\) interface. Phys. Rev. B 32, 8171 (1985)Google Scholar
  48. 48.
    Jin, S., Fischetti, M.V., Tang, T.-W.: Modeling of electron mobility in gated silicon nanowires at room temperature: surface roughness scattering, dielectric screening, and band non-parabolicity. J. Appl. Phys. 102, 083715 (2007) Google Scholar
  49. 49.
    Pala, M.G., Buran, C., Poli, S., Mouis, M.: Full quantum treatment of surface roughness effects in silicon nanowire and double gate FETs. J. Comput. Electron. 8, 374–381 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.V. Lashkaryov Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations