Skip to main content
Log in

An impact of bias and structure dependent L\(_\mathrm{SD}\) variation on the performance of GaN HEMTs based biosensor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, we discussed the effect of different bias and structures in relation to S-D distance variation on the device electrical and expected biosensing performance. Devices with source to drain length (\(L_{SD})\) variations from 3.5, 5.0, 8.0, 14.0, 26.0 to \(52~\upmu \)m were simulated at low and high bias voltages. Different structures having gate recess and finger variations were investigated for the complete range of \(L_{SD}\) variations. Small and very large \(L_{SD}\) variations in non-recessed structure showed good values of drain current \((I_{ds})\) and transconductances \((g_{m})\) at different low and high bias voltages respectively. Therefore expected response time and sensitivity could be improved by choosing a proper bias condition for different biosensing \(L_{SD}\) lengths. A gate recess structure showed better \(g_{m}\) values at low bias conditions for all \(L_{SD}\) lengths. However, \(I_{ds}\) degraded for these structures and hence the expected response time. The non-recessed structure variations in terms of number of fingers and gate width did not change the effective trends in \(L_{SD}\) variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen, K.H., Kang, B.S., Wang, H.T., Lele, T.P., Ren, F., Wang, Y.L., Chang, C.Y., Pearton, S.J., Dennis, D.M., Johonson, J.W., Rajagopal, P., Roberts, J.C., Piner, E.L., Linthicum, K.J.: c-erB-2 sensing using AlGaN/GaN High electron mobility transistor for breast cancer detection. Appl. Phys. Lett. 92, 192103–192105 (2008)

    Article  Google Scholar 

  2. Healy, D.A., Hayes, C.J., Leonard, P., McKenna, L., Kennedy, R.O.: Biosensor developments: application to prostate-specific antigen detection. Trends Biotechnol. 25, 125–131 (2007)

    Article  Google Scholar 

  3. Streckfus, C., Bigler, L.: The use of soluble, salivary c-erbB-2 for the detection and post-operative follow-up of breast cancer in women: the results of a five-year translational research study. Adv. Dent. Res. 18, 17–24 (2005)

    Article  Google Scholar 

  4. Chen, K.H., Wang, H., Kang, B., Chang, C., Wamg, Y., Lele, T., Ren, F., Pearton, S., Dabiran, A., Osinsky, A., Chow, P.: Low Hg (II) ion concentration electrical detection with AlGaN/GaN high electron mobility transistor. Sens. Actuators Biochem. 134, 386–389 (2008)

    Article  Google Scholar 

  5. Kang, B., Ren, F., Wang, L., Lofton, C., Tan, W., Lele, T.P., Pearton, S., Dabiran, A., Osinsky, A., Chow, P.: Electrical detection of immobilized proteins with ungated AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 87, 508–510 (2005)

    Google Scholar 

  6. Ren, F., Pearton, S.: Semiconductor Device-Based Sensors for Gas, Chemical, and Bio Applications. CRC Press, Boca Raton (2011)

    Google Scholar 

  7. Ambecher, O., Foutz, B., Smart, J., Shealy, J.R., Weimann, N.G., Chu, K., Murphy, M., Sierakowski, A.J., Schaff, W.J., Eastman, L.F., Dimitrov, R., Mitchell, A., Stutzmann, M.: Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys. 87, 334–344 (2000)

    Google Scholar 

  8. Osvald, J.: Polarization effects and energy band diagram in AlGaN/GaN heterostructure. Appl. Phys. A 87, 679–682 (2007)

    Article  Google Scholar 

  9. Gelmont, B., Kim, K.S., Shur, M.: Monte Carlo simulation of electron transport in gallium nitride. J. Appl. Phys. 74, 1818 (1993)

    Article  Google Scholar 

  10. Smith, A.W., Brennan, K.F.: Hydrodynamic simulation of semiconductor devices. Prog. Quant. Electr. 21, 293–360 (1998)

    Google Scholar 

  11. Faraclas, E.W., Anwar, A.F.M.: AlGaN/GaN HEMTs: experiment and simulation of DC characteristics. Solid State Electron. 50, 1051–1056 (2006)

    Google Scholar 

  12. Farahmand, M., et al.: Monte Carlo simulation of electron transport in III-nitride wurtzite phase material system: binaries and ternaries. IEEE Trans. Electron Devices 48, 535–542 (2001)

    Article  Google Scholar 

  13. Ide, T., Shimizu, M., Yagi, S., Inada, M., Piao, G.: Low on-resistance AlGaN/GaN HEMTs by reducing gate length and source-gate length. Physica Status Solidi (c) 5, 1998–2000 (2008)

    Article  Google Scholar 

  14. Russo, S., Carlo, A.Di, Ruythooren, W., Derluyn, J., Germain, M.: Scaling effects in AlGaN/GaN HEMTs: comparison between Monte Carlo simulations and experimental data. J. Comput. Electron. 5, 109–113 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Chandra Shekhar, director, CEERI and Dr. C. Dhanvantri, GL-ODG, CEERI, Pilani for their support and encouragement. Authors would also like to thank CSIR for funding under budget head PSC-201:Microsensys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niketa Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, N., Joshi, D. & Chaturvedi, N. An impact of bias and structure dependent L\(_\mathrm{SD}\) variation on the performance of GaN HEMTs based biosensor. J Comput Electron 13, 503–508 (2014). https://doi.org/10.1007/s10825-014-0561-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0561-4

Keywords

Navigation