Journal of Computational Electronics

, Volume 13, Issue 2, pp 496–502 | Cite as

Effect of unit-cells of the frequency selective surface as superstrate on the directivity of rectangular microstrip antenna

  • Kumud Ranjan Jha
  • G Singh


In this paper, the relationship between the number of unit-cells used in the design of a frequency selective surface (FSS) and its expected directivity is established. The relationship between the number of FSS unit-cells and the directivity is based on the planer microstrip patch array antenna design concept where the unit-cell is treated as the superstrate illuminated by the source. To validate the proposed technique, the analytical value of the directivity has been compared with that of ray-tracing method. The directivity of antenna is calculated for two different planar array configurations at 600 GHz. The results of numerical analysis are compared to that of the full-wave electromagnetic simulator CST Microwave Studio and results are comparable. Further, the directivity computed by this proposed technique has also been compared with that of the reported in literatures.


Microstrip antenna Directivity  Uniform planar array  Frequency selective surface 



The authors are sincerely thankful to anonymous reviewers for the critical comments and suggestions to improve the quality of the manuscript.


  1. 1.
    Balanis, C.A.: Antenna theory analysis and design. Wiley, New York (2001)Google Scholar
  2. 2.
    Von Trentini, G.: Partially reflecting sheet arrays. IRE Trans. Antennas Propag. 4, 666–671 (Oct. 1956)Google Scholar
  3. 3.
    Zhao, T., Jackson, D.R., Williams, J.T., Oliner, A.A.: General formulas for 2-D leaky-wave antennas. IEEE Trans. Antennas Propag. 53, 3525–3533 (2005)CrossRefGoogle Scholar
  4. 4.
    Liu, Z.G.: Fabry–Perot resonator antenna. J. Infrared Millim. Terahertz Waves 31(4), 391–403 (2010)Google Scholar
  5. 5.
    Liu, Z.G., Ge, Z.C., Chen, X.Y.: Research progress on Fabry–Perot resonator antenna. Int. J. Zhejiang Univ. Sci. A 10(4), 583–588 (2009)CrossRefMATHGoogle Scholar
  6. 6.
    Boutayeb, H., Tarot, A.C.: Internally excited Fabry–Perot type cavity: power normalization and directivity evaluation. IEEE Antenna Wirel. Propag. Lett. 5(1), 159–162 (2006)Google Scholar
  7. 7.
    Guerin, N., Enoch, S., Tayeb, G., Sabouroux, P., Vincent, P., Legay, H.: A metallic Fabry–Perot directivity antenna. IEEE Trans. Antennas Propag. 54(1), 220–224 (2006)CrossRefGoogle Scholar
  8. 8.
    Boutayeb, H., Denidni, T.A., Mahdjoubi, K., Tarot, A.C., Sebak, A.R., Talbi, L.: Analysis and design of a cylindrical EBG based directive antenna. IEEE Trans. Antennas Propag. 54(1), 211–219 (2006)CrossRefGoogle Scholar
  9. 9.
    Gadelli, R., Albani, M., Capolino, F.: Array thining by using antennas in a Fabry–Perot cavity for gain enhancement. IEEE Trans. Antennas Propag. 54(7), 1979–1990 (2006)CrossRefGoogle Scholar
  10. 10.
    Ge, Z.C., Zhang, W.X., Liu, Z.G., Gu, Y.Y.: Broadband and high-gain printed antennas constructed from Fabry–Perot resonator structure using EBG or FSS cover. Microw. Opt. Tech. Lett. 48(7), 1272–1274 (2006)CrossRefGoogle Scholar
  11. 11.
    Weily, R., Bird, T.S., Guo, Y.J.: A reconfigurable high-gain partially reflecting surface antenna. IEEE Trans. Antennas Propag. 56(11), 3382–3390 (2008)CrossRefGoogle Scholar
  12. 12.
    Foroozesh, A., Shafai, L.: Effects of artificial magnetic conductors in the design of low-profile high-gain planar antennas with high-permittivity dielectric superstrate. IEEE Antennas Wireless Propag. Lett. 8, 10–13 (2009)CrossRefGoogle Scholar
  13. 13.
    Ju, J., Kim, D., Choi, J.: Fabry–Perot cavity antenna with lateral metallic walls for WiBro base station applications. Electron. Lett. 45(3), 141–142 (2009)CrossRefGoogle Scholar
  14. 14.
    Jha, K.R., Singh, G.: Terahertz dipole antenna in Fabry–Perot cavity with two side-walls to enhance the directivity. Procedings of 35th Infrared Millimetre and Terahertz Waves, Rome, Italy, Sep. 05–08, 2010, pp. 1–2.Google Scholar
  15. 15.
    Kim, G.-J., Han, W.-K., Kim,J.-II, Jeon, S.-G.: High resolution terahertz imaging (T-ray) with a horn antenna. Procedings of 35th Infrared Millimetre and Terahertz Waves, Rome, Italy, Sep. 05–08, 2010, pp. 1–2.Google Scholar
  16. 16.
    Laskar, J., Pinel, S., Dawn, D., Sarkar, S., Perumana, B., Sen, P.: The next wireless waves is a millimeter wave. Micow. J 50(8), 22–36 (2007)Google Scholar
  17. 17.
    Siegel, P.H.: THz technology. IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002)CrossRefGoogle Scholar
  18. 18.
    Pieiewicz, R., Jacob, M., Koach, M., Schoebel, J., Kuner, T.: Performance analysis of future multigigabit wireless communication systems and THz frequency with highly directive antennas in indoor environments. IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008)CrossRefGoogle Scholar
  19. 19.
    Formanek, F., Burn, M.-A., Umetsu, T., Omari, S., Yasuda, A.: A spheric silicon lenses for terahertz photoconductive antennas. Appl. Phys. Lett. 94(2), 021113–021113-03 (2009)CrossRefGoogle Scholar
  20. 20.
    Filipovic, D.F., Gearhart, S.S., Rebeiz, G.N.: Double-slot antennas on extended hemispherical and elliptical silicon lens dielectric lenses. IEEE Trans. Microw. Theory Tech. 41(10), 1738–1749 (2003)CrossRefGoogle Scholar
  21. 21.
    Han, K., Nguyen, T.K., Park, I., Han, H.: Terahertz Yagi-Uda antenna for high input resistance. J. Infrared Millim. Terahertz Waves 31(4), 441–454 (2010)Google Scholar
  22. 22.
    Jha, K.R., Singh, G.: Dual-band rectangular microstrip patch antenna at terahertz frequency for surveillance system. J. Comput. Electron. 9(1), 31–41 (2010)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Jha, K.R., Singh, G.: Analysis and design of enhanced directivity microstrip antenna at terahertz frequency by using electromagnetic bandgap material. Int. J. Numer. Model. 24(5), 410–424 (2011)Google Scholar
  24. 24.
    Jha, K.R., Singh, G.: Design of highly directive cavity type terahertz antenna for wireless communication. Opt. Commun. 284(20), 4996–5002 (2011)CrossRefGoogle Scholar
  25. 25.
    Jha, K.R., Singh, G.: Ring resonator integrated hemi-elliptical lens antenna at terahertz frequency. Opt. Commun. 285(16), 3445–3452 (2012)CrossRefGoogle Scholar
  26. 26.
    Jha, K.R., Singh, G.: Microstrip patch array antenna on photonic crystal substrate at terahertz frequency. Infrared Phys. Technol. 55(1), 32–39 (2012)CrossRefGoogle Scholar
  27. 27.
    Piesiewicz, R., Islam, M.N., Koch, M., Kurner T.: Towards short-range terahertz communication systems: basic considerations. Procedings of 18th International conference on Applied electromagnetics and communications, Dubrovnik, Croatia, Oct. 12–14, 2005.Google Scholar
  28. 28.
    Foroozesh, A., Shafai, L.: 2-D truncated periodic leaky-wave antennas with reactive impedance surface ground. Procedings of IEEE AP-S Int. Symp., Albuquerque, NM, Jul. 9–14, 2006, pp. 15–18. Google Scholar
  29. 29.
    Foroozesh, A., Shafai, L.: Investigation into the effects of patch-type FSS superstrate on the high-gain cavity resonance antenna design. IEEE Trans. Antennas Propag. 58(2), 258–270 (2010)CrossRefGoogle Scholar
  30. 30.
    Collin, R.E.: Antennas and radiowave propagation. McGraw Hill International, New York (1985)Google Scholar
  31. 31.
    Feresidis, A.P., Vardaxoglou, J.C.: High gain planar antenna using optimised partially reflective ssurfaces. Proc. Inst. Electron. Eng. Microw. Antennas Propag. 48(6), 345–350 (2001)Google Scholar
  32. 32.
    Feresidis, A.P., Goussetis, G., Wang, S., Vardaxoglou, J.C.: Artificial magnetic conductor surfaces and their application to low-profile high gain planar antenna. IEEE Trans. Antennas propag. 53(1), 209–215 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Electronics and Communication EngineeringShri Mata Vaishno Devi UniversityKatraIndia
  2. 2.Department of Electronics and Communication EngineeringJaypee University of Information TechnologySolanIndia

Personalised recommendations