Journal of Computational Electronics

, Volume 13, Issue 2, pp 432–438 | Cite as

Physical model of dynamic Joule heating effect for reset process in conductive-bridge random access memory

  • Pengxiao Sun
  • Ling Li
  • Nianduan Lu
  • Yingtao Li
  • Ming Wang
  • Hongwei Xie
  • Su Liu
  • Ming Liu


Dynamic Joule heating effect of reset process in conductive-bridge random access memory (CBRAM) was investigated theoretically. By introducing the geometry effect of conductive filament (CF), the temperature and electric field distributions in the transient state in both one-dimen-sional and three-dimensional cases were discussed in detail. We found that the CF’s geometry plays an important role in the transient Joule heating process, and the transient thermal effect turns increasingly significant with increasing applied voltage in reset procedure. The proposed position where CF ruptures is between the location of temperature peak and narrow end of the CF rather than the point of temperature peak in the cone-shaped CF system. It is more interesting that the rupture of CF possibly occurs in transient process, before steady-state is established.


Transient Joule heating effect Conductive-bridge random access memory (CBRAM) Switching process 



This work was supported by the Ministry of Science and Technology of China under Grant Nos. 2010CB934200, 2011CBA00602, 2009CB930803, 2011CB921804, 2011AA010401, 2011AA010402 and XDA06020102, the National Natural Science Foundation of China under Grant Nos. 61221004, 61274091, 60825403, 61106119, 61106082 and 61306117.


  1. 1.
    Meijer, G.I.: Who wins the nonvolatile memory race? Science 319(5870), 1625–1626 (2008) CrossRefGoogle Scholar
  2. 2.
    Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007) CrossRefGoogle Scholar
  3. 3.
    Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009) CrossRefGoogle Scholar
  4. 4.
    Linn, E., Rosezin, R., Kugeler, C., Waser, R.: Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403–406 (2010) CrossRefGoogle Scholar
  5. 5.
    Yu, S., Wong, H.-S.: Compact modeling of conducting-bridge random-access memory (CBRAM). IEEE Trans. Electron Devices 58(5), 1352–1360 (2011) CrossRefGoogle Scholar
  6. 6.
    Russo, U., Kamalanathan, D., Ielmini, D., Lacaita, A.L., Kozicki, M.N.: Study of multilevel programming in programmable metalization cell (PMC) memory. IEEE Trans. Electron Devices 56(5), 1040–1047 (2009) CrossRefGoogle Scholar
  7. 7.
    Liu, Q., Sun, J., Lv, H., Long, S., Yin, K., Wan, N., Li, Y., Sun, L., Liu, M.: Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24(14), 1844–1849 (2012) CrossRefGoogle Scholar
  8. 8.
    Zhuge, F., Peng, S., He, C., Zhu, X., Chen, X., Liu, Y., Li, R.-W.: Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments. Nanotechnology 22(27), 275204 (2011) CrossRefGoogle Scholar
  9. 9.
    Rozenberg, M.J., Inoue, I.H., Sánchez, M.J.: Nonvolatile memory with multilevel switching: a basic model. Phys. Rev. Lett. 92(17), 178302 (2004) CrossRefGoogle Scholar
  10. 10.
    Nian, Y.B., Strozier, J., Wu, N.J., Chen, X., Ignatiev, A.: Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98(14), 146403 (2007) CrossRefGoogle Scholar
  11. 11.
    Chang, S.H., Lee, J.S., Chae, S.C., Lee, S.B., Liu, C., Kahng, B., Kim, D.W., Noh, T.W.: Occurrence of both unipolar memory and threshold resistance switching in a NiO film. Phys. Rev. Lett. 102(2), 026801 (2009) CrossRefGoogle Scholar
  12. 12.
    Lee, J.S., Lee, S.B., Chang, S.H., Gao, L.G., Kang, B.S., Lee, M.J., Kim, C.J., Noh, T.W., Kahng, B.: Scaling theory for unipolar resistance switching. Phys. Rev. Lett. 105(20), 205701 (2010) CrossRefGoogle Scholar
  13. 13.
    Hur, J.H., Lee, M.-J., Lee, C.B., Kim, Y.-B., Kim, C.-J.: Modeling for bipolar resistive memory switching in transition-metal oxides. Phys. Rev. B 82(15), 155321 (2010) CrossRefGoogle Scholar
  14. 14.
    Wang, Z., Yu, H., Tran, X.A., Fang, Z., Wang, J., Su, H.: Transport properties of HfO2−x based resistive-switching memories. Phys. Rev. B 85(19), 195322 (2012) CrossRefGoogle Scholar
  15. 15.
    Xue, K.-H., Blaise, P., Fonseca, L.R.C., Nishi, Y.: Prediction of semimetallic tetragonal Hf2O3 and Zr2O3 from first principles. Phys. Rev. Lett. 110(6), 065502 (2013) CrossRefGoogle Scholar
  16. 16.
    Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L.: Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56(2), 193–200 (2009) CrossRefGoogle Scholar
  17. 17.
    Sato, Y., Kinoshita, K., Aoki, M., Sugiyama, Y.: Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model. Appl. Phys. Lett. 90(3), 033503 (2007) CrossRefGoogle Scholar
  18. 18.
    Liang, Z., Jinyu, Z., Yu, H., Ximeng, G., He, Q., Zhiping, Y.: Dynamic modeling and atomistic simulations of SET and RESET operations in TiO2-based unipolar resistive memory. IEEE Electron Device Lett. 32(5), 677–679 (2011) CrossRefGoogle Scholar
  19. 19.
    Bersuker, G., Gilmer, D.C., Veksler, D., Yum, J., Park, H., Lian, S., Vandelli, L., Padovani, A., Larcher, L., McKenna, K., Shluger, A., Iglesias, V., Porti, M., Nafria, M., Taylor, W., Kirsch, P.D., Jammy, R.: Metal oxide RRAM switching mechanism based on conductive filament microscopic properties. In: Electron Devices Meeting (IEDM), 2010 IEEE International, 6–8 Dec. 2010, pp. 19.16.11–19.16.14 (2010) Google Scholar
  20. 20.
    Chang, S.H., Chae, S.C., Lee, S.B., Liu, C., Noh, T.W., Lee, J.S., Kahng, B., Jang, J.H., Kim, M.Y., Kim, D.W., Jung, C.U.: Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors. Appl. Phys. Lett. 92(18), 183507 (2008) CrossRefGoogle Scholar
  21. 21.
    Kim, K.M., Hwang, C.S.: The conical shape filament growth model in unipolar resistance switching of TiO[2] thin film. Appl. Phys. Lett. 94(12), 122109 (2009) CrossRefGoogle Scholar
  22. 22.
    Larentis, S., Nardi, F., Balatti, S., Gilmer, D.C., Ielmini, D.: Resistive switching by voltage-driven ion migration in bipolar RRAM-part II: Modeling. IEEE Trans. Electron Devices 59(9), 2468–2475 (2012) CrossRefGoogle Scholar
  23. 23.
    Guan, W., Liu, M., Long, S., Liu, Q., Wang, W.: On the resistive switching mechanisms of Cu/ZrO[2]:Cu/Pt. Appl. Phys. Lett. 93(22), 223506 (2008) CrossRefGoogle Scholar
  24. 24.
    Standards, U.S.B.o.: Copper wire tables. Government Printing Office (1914) Google Scholar
  25. 25.
    Lide, D.R., Bruno, T.J.: CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton (2010) Google Scholar
  26. 26.
    Tojo, T., Atake, T., Mori, T., Yamamura, H.: Heat capacity and thermodynamic functions of zirconia and yttria-stabilized zirconia. J. Chem. Thermodyn. 31(7), 831–845 (1999) CrossRefGoogle Scholar
  27. 27.
    Liu, Q., Long, S., Wang, W., Zuo, Q., Zhang, S., Chen, J., Liu, M.: Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions. IEEE Electron Device Lett. 30(12), 1335 (2009) CrossRefGoogle Scholar
  28. 28.
    Pulfrey, D.L., Shousha, A.H.M., Young, L.: Electronic conduction and space charge in amorphous insulating films. J. Appl. Phys. 41(7), 2838–2843 (1970) CrossRefGoogle Scholar
  29. 29.
    Banno, N., Sakamoto, T., Iguchi, N., Sunamura, H., Terabe, K., Hasegawa, T., Aono, M.: Diffusivity of cu ions in solid electrolyte and its effect on the performance of nanometer-scale switch. IEEE Trans. Electron Devices 55(11), 3283–3287 (2008) CrossRefGoogle Scholar
  30. 30.
    Bange, S., Schubert, M., Neher, D.: Charge mobility determination by current extraction under linear increasing voltages: case of nonequilibrium charges and field-dependent mobilities. Phys. Rev. B 81(3), 035209 (2010) CrossRefGoogle Scholar
  31. 31.
    Ielmini, D.: Modeling the universal set/reset characteristics of bipolar RRAM by field-and temperature-driven filament growth. IEEE Trans. Electron Devices 58(12), 4309–4317 (2011) CrossRefGoogle Scholar
  32. 32.
    Lee, H., Chen, P., Wu, T., Chen, Y., Wang, C., Tzeng, P., Lin, C., Chen, F., Lien, C., Tsai, M.-J.: Low power and high speed bipolar switching with a thin reactive ti buffer layer in robust HfO2 based RRAM. In: Electron Devices Meeting, 2008 (IEDM 2008), pp. 1–4. IEEE Press, New York (2008) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Pengxiao Sun
    • 1
    • 2
  • Ling Li
    • 1
  • Nianduan Lu
    • 1
  • Yingtao Li
    • 2
  • Ming Wang
    • 1
  • Hongwei Xie
    • 1
    • 2
  • Su Liu
    • 2
  • Ming Liu
    • 1
  1. 1.Laboratory of Nano-fabrication and Novel Devices Integrated TechnologyInstitute of Microelectronics, Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.School of Physical Science and TechnologyLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations