Advertisement

Journal of Computational Electronics

, Volume 12, Issue 4, pp 601–610 | Cite as

The importance of thermal conductivity modeling for simulations of self-heating effects in FD SOI devices

  • K. Raleva
  • D. Vasileska
Article

Abstract

In this review paper we want to emphasize the importance of having accurate thermal conductivity models for modeling self-heating effects on the device level. For that purpose, we first consider thin silicon films and calculate (using Sondheimer’s approach) their thermal conductivity that incorporates boundary scattering. We then compare the obtained thermal conductivity data with experimental measurements to prove the excellent model agreement with the experimental trends. The parameterized thermal conductivity data are then used in the higher level modeling of self-heating effects in fully-depleted (FD) SOI devices from different technology generations. We find that temperature and thickness dependent modeling of the thermal conductivity is essential for the 25 nanometers technology node. We have also taken into account the anisotropy of the thermal conductivity and modeled devices with (100) and (110) crystallographic orientation. We found out that from thermal point of view the (110) device behaves better, but the (100) device has higher on-current.

Keywords

Self-heating SOI devices BTE Phonons 

References

  1. 1.
    International Technology Roadmap for Semiconductors (http://public.itrs.net/)
  2. 2.
    Mistry, K., Armstrong, M., Auth, C., Cea, S., Coan, T., Ghani, T., Hoffmann, T., Murthy, A., Sandford, J., Shaheed, R., Zawadzki, K., Zhang, K., Thompson, S., Bohr, M.: Delaying forever: uniaxial strained silicon transistors in a 90 nm CMOS technology. Digest of Technical Papers, 2004 Symposium on VLSI Technology, pp. 50–51 (2004) Google Scholar
  3. 3.
    Yuang, M., et al.: Performance dependence of CMOS on silicon substrate orientation for ultrathin oxynitride and HfO2 gate dielectrics. IEEE Trans. Electron Devices 51(10), 1621–1626 (2004) CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Colinge, J.P.: Silicon-On-Insulator Technology: Materials to VLSI. Springer, Berlin (2012) Google Scholar
  6. 6.
    Lundstrom, M.: Purdue University, private communication Google Scholar
  7. 7.
    Chu, P.K.: Novel silicon-on-insulator structures for reduced self-heating effects. IEEE Circuits Syst. Mag. 5(4), 18–29 (2005) CrossRefGoogle Scholar
  8. 8.
    Linton, T.: Intel Corp., private communication Google Scholar
  9. 9.
    Chen, G.: Ballistic-diffusive heat-conduction equations. Phys. Rev. Lett. 86, 2297–2300 (2001) CrossRefGoogle Scholar
  10. 10.
    Reif, F.: Fundamentals of Statistical and Thermal Physics. McGraw-Hill, London (1985) Google Scholar
  11. 11.
    Asheghi, M., Touzelbaev, M.N., Goodson, K.E., Leung, Y.K., Wong, S.S.: Temperature dependent thermal conductivity of single-crystal silicon layers in SOI substrates. J. Heat Transfer 120, 30–33 (1998) CrossRefGoogle Scholar
  12. 12.
    Liu, W., Asheghi, M.: Phonon-boundary scattering in ultra-thin single crystal silicon layers. Appl. Phys. Lett. 84, 3819–3821 (2004) CrossRefGoogle Scholar
  13. 13.
    Lacroix, D., Joulain, K.: Monte Carlo transient phonons transport in silicon and germanium at nanoscales. Phys. Rev. B 72, 064305 (2005) (11 pages) CrossRefGoogle Scholar
  14. 14.
    Zhao, H., Freund, J.B.: Full-spectrum phonon relaxation times in crystalline Si from molecular dynamics simulations. J. Appl. Phys. 104, 033514 (2008) (6 pages) CrossRefGoogle Scholar
  15. 15.
    Ziman, J.: Electrons and phonons: the theory of transport phenomena in solids. Oxford University Press Google Scholar
  16. 16.
    Hardy, R.J.: Phonon Boltzmann equation and second sound in solids. Phys. Rev. B 2(4), 1193–1206 (1970) CrossRefGoogle Scholar
  17. 17.
    Mazumder, S., Majumder, A.: Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Transf. 123(4), 749–759 (2001) CrossRefGoogle Scholar
  18. 18.
    Joshi, A.A., Majumdar, A.: Transient ballistic and diffusive phonon heat transport in thin films. J. Appl. Phys. 74, 31–39 (1993) CrossRefGoogle Scholar
  19. 19.
    Chen, G.: Ballistic-diffusive equations for transient heat conduction from nano to macroscales. J. Heat Transf. 124(2), 320–328 (2002) CrossRefGoogle Scholar
  20. 20.
    Chen, C.: Non-local and non-equilibrium heat conduction in the vicinity of nanoparticles. J. Heat Transfer 118, 539–545 (1996) CrossRefGoogle Scholar
  21. 21.
    Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5265–5271 (1985) CrossRefGoogle Scholar
  22. 22.
    Narumanchi, S.V.J., Murthy, J.Y., Amon, C.H.: Submicron heat transport model in silicon accounting for phonon dispersion and polarization. Trans. Am. Soc. Mech. Eng. 126, 946–955 (2004) Google Scholar
  23. 23.
    Lai, J., Majumdar, A.: Concurent thermal and electrical modeling of submicrometer silicon devices. J. Appl. Phys. 79, 7353–7361 (1996) CrossRefGoogle Scholar
  24. 24.
    Majumdar, A., Fushinobu, K., Hijikata, K.: Effect of gate voltage on hot electron and hot phonon interaction and transport in a submicrometer transistor. J. Appl. Phys. 77, 6686–6694 (1995) CrossRefGoogle Scholar
  25. 25.
    Raleva, K., Vasileska, D., Goodnick, S.M., Nedjalkov, M.: Modeling thermal effects in nanodevices. IEEE Trans. Electron Devices 55(6), 1306–1316 (2008) CrossRefGoogle Scholar
  26. 26.
    Vasileska, D., Raleva, K., Goodnick, S.M.: Self-heating effects in nano-scale FD SOI devices: the role of the substrate, boundary conditions at various interfaces and the dielectric material type for the BOX. IEEE Trans. Electron Devices 56(12), 3064–3071 (2009) CrossRefGoogle Scholar
  27. 27.
    Sondheimer, E.H.: The mean free path of electrons in metals. Adv. Phys. 1(1) (1952), reprinted in Adv. Phys. 50, 499–537 (2001) Google Scholar
  28. 28.
    Palankovski, V., Selberherr, S.: Micro materials modeling in MINIMOS-NT. J. Microsyst. Technol. 7, 183–187 (2001) CrossRefGoogle Scholar
  29. 29.
    Silvaco Manual (www.silvaco.com)
  30. 30.
    Liu, W., Asheghi, M.: Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperatures. J. Appl. Phys. 98, 123523 (2005) CrossRefGoogle Scholar
  31. 31.
    Chun, J.-H., Kim, B., Liu, Y., Tornblad, O., Dutton, R.W.: Electro-thermal simulations of nanoscale transistors with optical and acoustic phonon heat conduction. In: 2005 Int. Conf. Simul. Semicond. Process Device, pp. 275–278 (2005) CrossRefGoogle Scholar
  32. 32.
    Vasileska, D., Goodnick, S.M., Raleva, K.: Modeling self-heating effects in nanoscale SOI devices, EDISON 16. J. Phys. Conf. Ser. 193, 012036 (2009). doi: 10.1088/1742-6596/193/1/012036 CrossRefGoogle Scholar
  33. 33.
    Aksamaija, Z., Knezevic, I.: Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes. Phys. Rev. B 82, 045319 (2010) CrossRefGoogle Scholar
  34. 34.
    Rahman, A., Lundstrom, M.S., Ghosh, A.W.: Generalized effective-mass approach for n-type metal-oxide-semiconductor field-effect transistors on arbitrarily orientated wafers. J. Appl. Phys. 97, 053702 (2005) CrossRefGoogle Scholar
  35. 35.
    Vasileska, D., Goodnick, S.M.: Computational Electronics. Morgan and Claypool, San Rafael (2006) Google Scholar
  36. 36.
    Vasileska, D., Raleva, K., Goodnick, S.M.: Electrothermal studies of FD SOI devices that utilize a new theoretical model for the temperature and thickness dependence of the thermal conductivity. IEEE Trans. Electron Devices 57(3), 726–728 (2010) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.FEITUniversity Sts. Cyril and MethodiusSkopjeRepublic of Macedonia
  2. 2.Arizona State UniversityTempeUSA

Personalised recommendations