Advertisement

Journal of Computational Electronics

, Volume 12, Issue 4, pp 651–657 | Cite as

3D Monte Carlo simulation of FinFET and FDSOI devices with accurate quantum correction

  • F. M. Bufler
  • L. Smith
Article

Abstract

The performance of FinFET and FDSOI devices is compared by 3D Monte Carlo simulation using an enhanced quantum correction scheme. This scheme has two new features: (i) the quantum correction is extracted from a 2D cross-section of the 3D device and (ii) in addition to using a modified oxide permittivity and a modified work function in subthreshold, the work function is ramped above threshold to a different value in the on-state. This approach improves the accuracy of the quantum-correction for multi-gate devices and is shown to accurately reproduce 3D density-gradient simulation also at short channel lengths. 15 nm FDSOI device performance with thin box and back-gate bias is found to be competitive: compared to a FinFET with (110)/〈110〉 sidewall/channel orientation, the on-current for N-type devices is 25 % higher and the off-current is only increased by a factor of 2.5.

Keywords

3D Monte Carlo Quantum effects Fully-depleted SOI devices FinFET 

Notes

Acknowledgements

We would like to thank A. Erlebach and F.O. Heinz for useful discussions.

References

  1. 1.
    Colinge, J.P.: Multi-gate SOI MOSFETs. Microelectron. Eng. 84, 2071–2076 (2007) CrossRefGoogle Scholar
  2. 2.
    Planes, N., Weber, O., Barral, V., Haendler, S., Noblet, D., Croain, D., Bocat, M., Sassoulas, P.-O., Federspiel, X., Cros, A., Bajolet, A., Richard, E., Dumont, B., Perreau, P., Petit, D., Golanski, D., Fenouillet-Bérange, C., Guillot, N., Rafik, M., Huard, V., Puget, S., Montagner, X., Jaud, M.-A., Rozeau, O., Saxod, O., Wacquant, F., Monsieur, F., Barge, D., Pinzelli, L., Mellier, M., Boeuf, F., Arnaud, F., Haond, M.: 28nm FDSOI technology platform for high-speed low-voltage digital applications. In: Symp. on VLSI Tech., Honolulu, Hawaii, June 2012, pp. 133–134 (2012) Google Scholar
  3. 3.
    Basker, V.S., Standaert, T., Kawasaki, H., Yeh, C.-C., Maitra, K., Yamashita, T., Faltermeier, J., Adhikari, H., Jagannathan, H., Wang, J., Sunamura, H., Kanakasabapathy, S., Schmitz, S., Cummings, J., Inada, A., Lin, C.-H., Kulkarni, P., Zhu, Y., Kuss, J., Yamamoto, T., Kumar, A., Wahl, J., Yagishita, A., Edge, L.F., Kim, R.H., McIellan, E., Holmes, S.J., Johnson, R.C., Levin, T., Demarest, J., Hane, M., Takayanagi, M., Colburn, M., Paruchuri, V.K., Miller, R.J., Bu, H., Doris, B., McHerron, D., Leobandung, E., O’Neill, J.: A 0.063 μm2 FinFET SRAM cell demonstration with conventional lithography using a novel integration scheme with aggressively scaled fin and gate pitch. In: Symp. on VLSI Tech., Honolulu, Hawaii, June 2010, pp. 19–20 (2010) Google Scholar
  4. 4.
    Bufler, F.M., Heinz, F.O., Smith, L.: Efficient 3D Monte Carlo simulation of orientation and stress effects in FinFETs. In: Proc. SISPAD, Glasgow, UK, September 2013, pp. 172–175 (2013) Google Scholar
  5. 5.
    Fischetti, M.V., Laux, S.E.: Monte Carlo study of electron transport in silicon inversion layers. Phys. Rev. B 48(4), 2244–2274 (1993) CrossRefGoogle Scholar
  6. 6.
    Jungemann, C., Emunds, A., Engl, W.L.: Simulation of linear and nonlinear electron transport in homogeneous silicon inversion layers. Solid-State Electron. 36, 1529–1540 (1993) CrossRefGoogle Scholar
  7. 7.
    Saint-Martin, J., Bournel, A., Monsef, F., Chassat, C., Dollfus, P.: Multi sub-band Monte Carlo simulation of an ultra-thin double gate MOSFET with 2D electron gas. Semicond. Sci. Technol. 21, L29–L31 (2006) CrossRefGoogle Scholar
  8. 8.
    Lucci, L., Palestri, P., Esseni, D., Bergagnini, L., Selmi, L.: Monte Carlo study of transport, quantization, and electron-gas degeneration in ultrathin SOI n-MOSFETs. IEEE Trans. Electron Devices 54, 1156–1164 (2007) CrossRefGoogle Scholar
  9. 9.
    Sampedro, C., Gámiz, F., Godoy, A., Valin, R., Garcia-Loureiro, A., Ruiz, F.G.: Multi-subband Monte Carlo study of device orientation effects in ultra-short channel DGSOI. Solid-State Electron. 54, 131–136 (2010) CrossRefGoogle Scholar
  10. 10.
    Winstead, B., Ravaioli, U.: A quantum correction based on Schrödinger equation applied to Monte Carlo device simulation. IEEE Trans. Electron Devices 50, 440–446 (2003) CrossRefGoogle Scholar
  11. 11.
    Palestri, P., Eminente, S., Esseni, D., Fiegna, C., Sangiorgi, E., Selmi, L.: An improved semi-classical Monte-Carlo approach for nano-scale MOSFET simulation. Solid-State Electron. 49, 727–732 (2005) CrossRefGoogle Scholar
  12. 12.
    Ghetti, A., Carnevale, G., Rideau, D.: Coupled mechanical and 3-D Monte Carlo simulation of silicon nanowire MOSFETs. IEEE Trans. Nanotechnol. 6, 659–666 (2007) CrossRefGoogle Scholar
  13. 13.
    Mori, T., Azuma, Y., Tsuchiya, H., Miyoshi, T.: Comparative study on drive current of III–V semiconductor, Ge, and Si channel n-MOSFETs based on quantum-corrected Monte Carlo simulation. IEEE Trans. Nanotechnol. 7, 237–241 (2008) CrossRefGoogle Scholar
  14. 14.
    Hudé, R., Villanueva, D., Clerc, R., Ghibaudo, G., Robilliart, E.: A simple approach to account for the impact of quantum confinement on the charge in semiclassical Monte Carlo simulations of bulk nMOSFETs. In: Proc. ULIS, Bologna, Italy, April 2005, pp. 159–162 (2005) Google Scholar
  15. 15.
    Bufler, F.M., Hudé, R., Erlebach, A.: On a simple and accurate quantum correction for Monte Carlo simulation. J. Comput. Electron. 5, 467–469 (2006) CrossRefGoogle Scholar
  16. 16.
    Pham, A.T., Jungemann, C., Meinerzhagen, B.: Microscopic modeling of hole inversion layer mobility in unstrained and uniaxially stressed Si on arbitrarily oriented substrates. Solid-State Electron. 52, 1437–1442 (2008) CrossRefGoogle Scholar
  17. 17.
    Bufler, F.M., Heinz, F.O., Tsibizov, A., Oulmane, M.: Simulation of 〈110〉 nMOSFETs with a tensile strained cap layer. ECS Trans. 16(10), 91–100 (2008) CrossRefGoogle Scholar
  18. 18.
    Bufler, F.M., Erlebach, A., Oulmane, M.: Hole mobility model with silicon inversion layer symmetry and stress-dependent piezoconductance coefficients. IEEE Electron Device Lett. 30, 996–998 (2009) CrossRefGoogle Scholar
  19. 19.
    Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials. Rev. Mod. Phys. 55, 645–705 (1983) CrossRefGoogle Scholar
  20. 20.
    Bufler, F.M., Meinerzhagen, B.: Hole transport in strained Si1−xGex alloys on Si1−yGey substrates. J. Appl. Phys. 84, 5597–5602 (1998) CrossRefGoogle Scholar
  21. 21.
    Akarvardar, K., Young, C.D., Baykan, M.O., Ok, I., Ngai, T., Ang, K.-W., Rodgers, M.P., Gausepohl, S., Majhi, P., Hobbs, C., Kirsch, P.D., Jammy, R.: Impact of fin doping and gate stack on FinFET (110) and (100) electron and hole mobilities. IEEE Electron Device Lett. 33, 351–353 (2012) CrossRefGoogle Scholar
  22. 22.
    Granzner, R., Polyakov, V.M., Schwierz, F., Kittler, M., Doll, T.: On the suitability of DD and HD models for the simulation of nanometer double-gate MOSFETs. Physica E 19, 33–38 (2003) CrossRefGoogle Scholar
  23. 23.
    Bufler, F.M., Erlebach, A.: Monte Carlo simulation of the performance dependence on surface and channel orientation in scaled pFinFETs. In: Proc. ESSDERC, Montreux, Switzerland, September 2006, pp. 174–177 (2006) Google Scholar
  24. 24.
    Bufler, F.M., Keith, S., Meinerzhagen, B.: Anisotropic ballistic in-plane transport of electrons in strained Si. In: Proc. SISPAD, Leuven, Belgium, September 1998, pp. 239–242 (1998) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Synopsys Schweiz GmbHZürichSwitzerland
  2. 2.Institut für Integrierte SystemeETH ZürichZürichSwitzerland
  3. 3.Synopsys Inc.Mountain ViewUSA

Personalised recommendations