# 3D Monte Carlo simulation of FinFET and FDSOI devices with accurate quantum correction

- 428 Downloads
- 10 Citations

## Abstract

The performance of FinFET and FDSOI devices is compared by 3D Monte Carlo simulation using an enhanced quantum correction scheme. This scheme has two new features: (i) the quantum correction is extracted from a 2D cross-section of the 3D device and (ii) in addition to using a modified oxide permittivity and a modified work function in subthreshold, the work function is ramped above threshold to a different value in the on-state. This approach improves the accuracy of the quantum-correction for multi-gate devices and is shown to accurately reproduce 3D density-gradient simulation also at short channel lengths. 15 nm FDSOI device performance with thin box and back-gate bias is found to be competitive: compared to a FinFET with (110)/〈110〉 sidewall/channel orientation, the on-current for *N*-type devices is 25 % higher and the off-current is only increased by a factor of 2.5.

## Keywords

3D Monte Carlo Quantum effects Fully-depleted SOI devices FinFET## Notes

### Acknowledgements

We would like to thank A. Erlebach and F.O. Heinz for useful discussions.

## References

- 1.Colinge, J.P.: Multi-gate SOI MOSFETs. Microelectron. Eng.
**84**, 2071–2076 (2007) CrossRefGoogle Scholar - 2.Planes, N., Weber, O., Barral, V., Haendler, S., Noblet, D., Croain, D., Bocat, M., Sassoulas, P.-O., Federspiel, X., Cros, A., Bajolet, A., Richard, E., Dumont, B., Perreau, P., Petit, D., Golanski, D., Fenouillet-Bérange, C., Guillot, N., Rafik, M., Huard, V., Puget, S., Montagner, X., Jaud, M.-A., Rozeau, O., Saxod, O., Wacquant, F., Monsieur, F., Barge, D., Pinzelli, L., Mellier, M., Boeuf, F., Arnaud, F., Haond, M.: 28nm FDSOI technology platform for high-speed low-voltage digital applications. In: Symp. on VLSI Tech., Honolulu, Hawaii, June 2012, pp. 133–134 (2012) Google Scholar
- 3.Basker, V.S., Standaert, T., Kawasaki, H., Yeh, C.-C., Maitra, K., Yamashita, T., Faltermeier, J., Adhikari, H., Jagannathan, H., Wang, J., Sunamura, H., Kanakasabapathy, S., Schmitz, S., Cummings, J., Inada, A., Lin, C.-H., Kulkarni, P., Zhu, Y., Kuss, J., Yamamoto, T., Kumar, A., Wahl, J., Yagishita, A., Edge, L.F., Kim, R.H., McIellan, E., Holmes, S.J., Johnson, R.C., Levin, T., Demarest, J., Hane, M., Takayanagi, M., Colburn, M., Paruchuri, V.K., Miller, R.J., Bu, H., Doris, B., McHerron, D., Leobandung, E., O’Neill, J.: A 0.063 μm
^{2}FinFET SRAM cell demonstration with conventional lithography using a novel integration scheme with aggressively scaled fin and gate pitch. In: Symp. on VLSI Tech., Honolulu, Hawaii, June 2010, pp. 19–20 (2010) Google Scholar - 4.Bufler, F.M., Heinz, F.O., Smith, L.: Efficient 3D Monte Carlo simulation of orientation and stress effects in FinFETs. In: Proc. SISPAD, Glasgow, UK, September 2013, pp. 172–175 (2013) Google Scholar
- 5.Fischetti, M.V., Laux, S.E.: Monte Carlo study of electron transport in silicon inversion layers. Phys. Rev. B
**48**(4), 2244–2274 (1993) CrossRefGoogle Scholar - 6.Jungemann, C., Emunds, A., Engl, W.L.: Simulation of linear and nonlinear electron transport in homogeneous silicon inversion layers. Solid-State Electron.
**36**, 1529–1540 (1993) CrossRefGoogle Scholar - 7.Saint-Martin, J., Bournel, A., Monsef, F., Chassat, C., Dollfus, P.: Multi sub-band Monte Carlo simulation of an ultra-thin double gate MOSFET with 2D electron gas. Semicond. Sci. Technol.
**21**, L29–L31 (2006) CrossRefGoogle Scholar - 8.Lucci, L., Palestri, P., Esseni, D., Bergagnini, L., Selmi, L.: Monte Carlo study of transport, quantization, and electron-gas degeneration in ultrathin SOI n-MOSFETs. IEEE Trans. Electron Devices
**54**, 1156–1164 (2007) CrossRefGoogle Scholar - 9.Sampedro, C., Gámiz, F., Godoy, A., Valin, R., Garcia-Loureiro, A., Ruiz, F.G.: Multi-subband Monte Carlo study of device orientation effects in ultra-short channel DGSOI. Solid-State Electron.
**54**, 131–136 (2010) CrossRefGoogle Scholar - 10.Winstead, B., Ravaioli, U.: A quantum correction based on Schrödinger equation applied to Monte Carlo device simulation. IEEE Trans. Electron Devices
**50**, 440–446 (2003) CrossRefGoogle Scholar - 11.Palestri, P., Eminente, S., Esseni, D., Fiegna, C., Sangiorgi, E., Selmi, L.: An improved semi-classical Monte-Carlo approach for nano-scale MOSFET simulation. Solid-State Electron.
**49**, 727–732 (2005) CrossRefGoogle Scholar - 12.Ghetti, A., Carnevale, G., Rideau, D.: Coupled mechanical and 3-D Monte Carlo simulation of silicon nanowire MOSFETs. IEEE Trans. Nanotechnol.
**6**, 659–666 (2007) CrossRefGoogle Scholar - 13.Mori, T., Azuma, Y., Tsuchiya, H., Miyoshi, T.: Comparative study on drive current of III–V semiconductor, Ge, and Si channel n-MOSFETs based on quantum-corrected Monte Carlo simulation. IEEE Trans. Nanotechnol.
**7**, 237–241 (2008) CrossRefGoogle Scholar - 14.Hudé, R., Villanueva, D., Clerc, R., Ghibaudo, G., Robilliart, E.: A simple approach to account for the impact of quantum confinement on the charge in semiclassical Monte Carlo simulations of bulk nMOSFETs. In: Proc. ULIS, Bologna, Italy, April 2005, pp. 159–162 (2005) Google Scholar
- 15.Bufler, F.M., Hudé, R., Erlebach, A.: On a simple and accurate quantum correction for Monte Carlo simulation. J. Comput. Electron.
**5**, 467–469 (2006) CrossRefGoogle Scholar - 16.Pham, A.T., Jungemann, C., Meinerzhagen, B.: Microscopic modeling of hole inversion layer mobility in unstrained and uniaxially stressed Si on arbitrarily oriented substrates. Solid-State Electron.
**52**, 1437–1442 (2008) CrossRefGoogle Scholar - 17.Bufler, F.M., Heinz, F.O., Tsibizov, A., Oulmane, M.: Simulation of 〈110〉 nMOSFETs with a tensile strained cap layer. ECS Trans.
**16**(10), 91–100 (2008) CrossRefGoogle Scholar - 18.Bufler, F.M., Erlebach, A., Oulmane, M.: Hole mobility model with silicon inversion layer symmetry and stress-dependent piezoconductance coefficients. IEEE Electron Device Lett.
**30**, 996–998 (2009) CrossRefGoogle Scholar - 19.Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials. Rev. Mod. Phys.
**55**, 645–705 (1983) CrossRefGoogle Scholar - 20.Bufler, F.M., Meinerzhagen, B.: Hole transport in strained Si
_{1−x}Ge_{x}alloys on Si_{1−y}Ge_{y}substrates. J. Appl. Phys.**84**, 5597–5602 (1998) CrossRefGoogle Scholar - 21.Akarvardar, K., Young, C.D., Baykan, M.O., Ok, I., Ngai, T., Ang, K.-W., Rodgers, M.P., Gausepohl, S., Majhi, P., Hobbs, C., Kirsch, P.D., Jammy, R.: Impact of fin doping and gate stack on FinFET (110) and (100) electron and hole mobilities. IEEE Electron Device Lett.
**33**, 351–353 (2012) CrossRefGoogle Scholar - 22.Granzner, R., Polyakov, V.M., Schwierz, F., Kittler, M., Doll, T.: On the suitability of DD and HD models for the simulation of nanometer double-gate MOSFETs. Physica E
**19**, 33–38 (2003) CrossRefGoogle Scholar - 23.Bufler, F.M., Erlebach, A.: Monte Carlo simulation of the performance dependence on surface and channel orientation in scaled pFinFETs. In: Proc. ESSDERC, Montreux, Switzerland, September 2006, pp. 174–177 (2006) Google Scholar
- 24.Bufler, F.M., Keith, S., Meinerzhagen, B.: Anisotropic ballistic in-plane transport of electrons in strained Si. In: Proc. SISPAD, Leuven, Belgium, September 1998, pp. 239–242 (1998) Google Scholar