Journal of Computational Electronics

, Volume 12, Issue 4, pp 592–600 | Cite as

Efficient and realistic device modeling from atomic detail to the nanoscale

  • J. E. Fonseca
  • T. Kubis
  • M. Povolotskyi
  • B. Novakovic
  • A. Ajoy
  • G. Hegde
  • H. Ilatikhameneh
  • Z. Jiang
  • P. Sengupta
  • Y. Tan
  • G. Klimeck


As semiconductor devices scale to new dimensions, the materials and designs become more dependent on atomic details. NEMO5 is a nanoelectronics modeling package designed for comprehending the critical multi-scale, multi-physics phenomena through efficient computational approaches and quantitatively modeling new generations of nanoelectronic devices as well as predicting novel device architectures and phenomena. This article seeks to provide updates on the current status of the tool and new functionality, including advances in quantum transport simulations and with materials such as metals, topological insulators, and piezoelectrics.


Nanoelectronics Greens function formalism (NEGF) NEMO Tight-binding Quantum dot Strain Transport and phonons Poisson Parallel computing 



This work was partially supported by NSF PetaApps grant number OCI-0749140, NSF grant EEC-0228390 that funds the Network for Computational Nanotechnology, and SRC NEMO5 development: Semiconductor Research Corporation (SRC) (Task 2141), and Intel Corp.

With kind permission from Springer Science+Business Media: Journal of Computational Electronics, Empirical tight binding parameters for GaAs and MgO with explicit basis through DFT mapping, volume 12, issue 1, 2013, pp. 56–60, Yaohua Tan, Michael Povolotskyi, Tillmann Kubis, Yu He, Zhengping Jiang, Gerhard Klimeck, and Timothy B. Boykin, Figs. 6 and 7, ©Springer Science+Business Media New York 2013 doi: 10.1007/s10825-013-0436-0.


  1. 1.
    International Technology Roadmap for Semiconductors (2012).
  2. 2.
    Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C.L., Klimeck, G., Simmons, M.Y.: A single-atom transistor. Nat. Nanotechnol. 7(4), 242–246 (2012) CrossRefGoogle Scholar
  3. 3.
    Steiger, S., Povolotskyi, M., Park, H.H., Kubis, T., Klimeck, G.: Nemo5: a parallel multiscale nanoelectronics modeling tool. IEEE Trans. Nanotechnol. 10(6), 1464–1474 (2011). 844JA Cited CrossRefGoogle Scholar
  4. 4.
    Sellier, J., Fonseca, J., Kubis, T.C., Povolotskyi, M., He, Y., Ilatikhameneh, H., Jiang, Z., Kim, S., Mejia, D., Sengupta, P., Tan, Y.: Nemo5, a parallel, multiscale, multiphysics nanoelectronics modeling tool. In: SISPAD (2012) Google Scholar
  5. 5.
    Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005) CrossRefGoogle Scholar
  6. 6.
    Cauley, S., Luisier, M., Balakrishnan, V., Klimeck, G., Koh, C.-K.: Distributed non-equilibrium Green’s function algorithms for the simulation of nanoelectronic devices with scattering. J. Appl. Phys. 110(4), 043713 (2011) CrossRefGoogle Scholar
  7. 7.
    Zeng, L., He, Y., Povolotskyi, M., Liu, X., Klimeck, G., Kubis, T.: Low rank approximation method for efficient green’s function calculation of dissipative quantum transport. J. Appl. Phys. 113(21), 213707–8 (2013) CrossRefGoogle Scholar
  8. 8.
    Mamaluy, D., Sabathil, M., Vogl, P.: Efficient method for the calculation of ballistic quantum transport. J. Appl. Phys. 93(8), 4628–4633 (2003) CrossRefGoogle Scholar
  9. 9.
    Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 96(4), 2192–2203 (2004) CrossRefGoogle Scholar
  10. 10.
    Ting, D.Z.Y., Yu, E.T., McGill, T.C.: Multiband treatment of quantum transport in interband tunnel devices. Phys. Rev. B 45(7), 3583–3592 (1992) CrossRefGoogle Scholar
  11. 11.
    Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman McInnes, L., Smith, B.F., Zhang, H.: Petsc web page (2013).
  12. 12.
    Trellakis, A., Galick, A.T., Pacelli, A., Ravaioli, U.: Iteration scheme for the solution of the two-dimensional Schrödinger–Poisson equations in quantum structures. J. Appl. Phys. 81(12), 7880–7884 (1997) CrossRefGoogle Scholar
  13. 13.
    Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81(12), 7845–7869 (1997) CrossRefGoogle Scholar
  14. 14.
    Cowell, W.R.: Sources and Development of Mathematical Software. In: Cowell, W.R. (ed.): Prentice-Hall Series in Computational Mathematics. Prentice Hall, Englewood Cliffs (1984). 83027012 Wayne R. Cowell (ed.) and index Google Scholar
  15. 15.
    Antoniadis, D.A., Aberg, I., NiChleirigh, C., Nayfeh, O.M., Khakifirooz, A., Hoyt, J.L.: Continuous mosfet performance increase with device scaling: the role of strain and channel material innovations. IBM J. Res. Dev. 50(4/5), 363–376 (2006) CrossRefGoogle Scholar
  16. 16.
    Steiger, S., Salmani-Jelodar, M., Areshkin, D., Paul, A., Kubis, T.C., Povolotskyi, M., Park, H.-H., Klimeck, G.: Enhanced valence force field model for the lattice properties of gallium arsenide. Phys. Rev. B, Solid State 84(15), 155204 (2011) CrossRefGoogle Scholar
  17. 17.
    Paul, A., Luisier, M., Klimeck, G.: Modified valence force field approach for phonon dispersion: from zinc-blende bulk to nanowires. J. Comput. Electron. 9(3–4), 160–172 (2010) CrossRefGoogle Scholar
  18. 18.
    Sui, Z., Herman, I.P.: Effect of strain on phonons in Si, Ge, and Si/Ge heterostructures. Phys. Rev. B, Solid State 48(24), 17938–17953 (1993) CrossRefGoogle Scholar
  19. 19.
    Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard Iii, W.A., Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451(7175), 168–171 (2008) CrossRefGoogle Scholar
  20. 20.
    Theis, T.N., Solomon, P.M.: It’s time to reinvent the transistor! Science 327(5973), 1600–1601 (2010) CrossRefGoogle Scholar
  21. 21.
    Newns, D.M., Elmegreen, B.G., Liu, X.-H., Martyna, G.J.: The piezoelectronic transistor: a nanoactuator-based post-cmos digital switch with high speed and low power. Mater. Res. Soc. Bull. 37(11), 1071–1076 (2012) CrossRefGoogle Scholar
  22. 22.
    Newns, D.M., Elmegreen, B.G., Liu, X.-H., Martyna, G.J.: High response piezoelectric and piezoresistive materials for fast, low voltage switching: simulation and theory of transduction physics at the nanometer-scale. Adv. Mater. 24(27), 3672–3677 (2012) CrossRefGoogle Scholar
  23. 23.
    Mott, N.F.: Metal-insulator transition. Rev. Mod. Phys. 40(4), 677–683 (1968) CrossRefGoogle Scholar
  24. 24.
    Tan, Y., Povolotskyi, M., Kubis, T.C., He, Y., Jiang, Z., Klimeck, G., Boykin, T.: Parameterization of tight-binding models from density functional theory calculations. J. Comput. Electron. 12, 56 (2013) CrossRefGoogle Scholar
  25. 25.
    Jiang, Z., Kuroda, M.A., Tan, Y., Newns, D.M., Povolotskyi, M., Boykin, T.B., Kubis, T., Klimeck, G., Martyna, G.J.: Electron transport in nano-scaled piezoelectronic devices. Appl. Phys. Lett. 102(19), 193501–3 (2013) CrossRefGoogle Scholar
  26. 26.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996) CrossRefGoogle Scholar
  27. 27.
    Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954) CrossRefMATHGoogle Scholar
  28. 28.
    Podolskiy, A.V., Vogl, P.: Compact expression for the angular dependence of tight-binding Hamiltonian matrix elements. Phys. Rev. B 69, 233101 (2004) CrossRefGoogle Scholar
  29. 29.
    Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010) CrossRefGoogle Scholar
  30. 30.
    Fu, L., Kane, C.L.: Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007) CrossRefGoogle Scholar
  31. 31.
    Sengupta, P., Kubis, T., Tan, Y., Povolotskyi, M., Gerhard, K.: Design principles for HgTe based topological insulator devices. J. Appl. Phys. 114(4), 043702 (2013) CrossRefGoogle Scholar
  32. 32.
    Lee, S., von Allmen, P.: Tight-binding modeling of thermoelectric properties of bismuth telluride. Appl. Phys. Lett. 88, 022107 (2006) CrossRefGoogle Scholar
  33. 33.
    Souma, S., Kosaka, K., Sato, T., Komatsu, M., Takayama, A., Takahashi, T., Kriener, M., Segawa, K., Ando, Y.: Direct measurement of the out-of-plane spin texture in the Dirac-cone surface state of a topological insulator. Phys. Rev. Lett. 106(21), 216803 (2011) CrossRefGoogle Scholar
  34. 34.
    Till, A., Vogl, P.: Full-band envelope-function approach for type-ii broken-gap superlattices. Phys. Rev. B, Solid State 80(3), 035304 (2009) CrossRefGoogle Scholar
  35. 35.
    Boykin, T.B., Kharche, N., Klimeck, G., Korkusinski, M.: Approximate bandstructures of semiconductor alloys from tight-binding supercell calculations. J. Phys. Condens. Matter 19, 036203 (2007) CrossRefGoogle Scholar
  36. 36.
    Popescu, V., Zunger, A.: Extracting E versus k effective band structure from supercell calculations on alloys and impurities. Phys. Rev. B 85(8), 085201 (2012 CrossRefGoogle Scholar
  37. 37.
    Boykin, T.B., Kharche, N., Klimeck, G.: Non-primitive rectangular cells for tight-binding electronic structure calculations. Physica E, Low-Dimens. Syst. Nanostruct. 41(3), 490–494 (2009) CrossRefGoogle Scholar
  38. 38.
    Klimeck, G., Shahid Ahmed, S., Bae, H., Kharche, N., Clark, S., Haley, B., Lee, S., Naumov, M., Ryu, H., Saied, F., et al.: Atomistic simulation of realistically sized nanodevices using nemo 3-d—Part i: models and benchmarks. IEEE Trans. Electron Devices 54(9), 2079–2089 (2007) CrossRefGoogle Scholar
  39. 39.
    Klimeck, G., Ahmed, S.S., Kharche, N., Korkusinski, M., Usman, M., Prada, M., Boykin, T.B.: Atomistic simulation of realistically sized nanodevices using nemo 3-d—Part ii: applications. IEEE Trans. Electron Devices 54(9), 2090–2099 (2007) CrossRefGoogle Scholar
  40. 40.
    Aravind, P.K.: On visualizing crystal lattice planes. Am. J. Phys. 74, 794 (2006) CrossRefGoogle Scholar
  41. 41.
    Ajoy, A.: Complex bandstructure of direct bandgap III–V semiconductors: application to tunneling. In: 16th International Workshop on Physics of Semiconductor Devices, p. 854923. International Society for Optics and Photonics, Bellingham (2012) CrossRefGoogle Scholar
  42. 42.
    Paul, A., Mehrotra, S., Luisier, M., Klimeck, G.: Performance prediction of ultrascaled SiGe/Si core/shell electron and hole nanowire mosfets. IEEE Electron Device Lett. 31(4), 278–280 (2010) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. E. Fonseca
    • 1
  • T. Kubis
    • 1
  • M. Povolotskyi
    • 1
  • B. Novakovic
    • 1
  • A. Ajoy
    • 1
  • G. Hegde
    • 1
  • H. Ilatikhameneh
    • 1
  • Z. Jiang
    • 1
  • P. Sengupta
    • 1
  • Y. Tan
    • 1
  • G. Klimeck
    • 1
  1. 1.Network for Computational Nanotechnology Purdue University West LafayetteIndianaUSA

Personalised recommendations