Skip to main content
Log in

Influence of skin effect on the series resistance of millimeter-wave IMPATT devices

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

An attempt is made in this paper to study the influence of skin depth on the parasitic series resistance of millimeter-wave IMPATT devices based on Silicon. The method is based on the concept of depletion width modulation of the device under large-signal condition. A large-signal simulation model based on non-sinusoidal voltage excitation is used for this study. The electric field snap-shots of 35 GHz Single-Drift Region (SDR) and 94 GHz Double-Drift Region (DDR) IMPATT devices are first obtained from which the series resistances are estimated by incorporating the effect of skin depth in the modeling and simulation. The series resistances of these devices are also obtained by neglecting the effect of skin depth. The values of series resistances obtained from the simulation are compared with the corresponding experimentally reported values. It is observed that the series resistance estimated by including the skin effect is in closer agreement with the experimental values as compared to that without including the same. Thus the skin effect plays an important role for determining the series resistance of IMPATT devices at millimeter-wave frequency bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Midford, T.A., Bernick, R.L.: Millimeter wave CW IMPATT diodes and oscillators. IEEE Trans. Microw. Theory Tech. 27(5), 483–492 (1979)

    Article  Google Scholar 

  2. Chang, Y., Hellum, J.M., Paul, J.A., Weller, K.P.: Millimeter-wave IMPATT sources for communication applications. In: IEEE MTT-S International Microwave Symposium Digest, pp. 216–219 (1977)

    Chapter  Google Scholar 

  3. Gray, W.W., Kikushima, L., Morentc, N.P., Wagner, R.J.: Applying IMPATT power sources to modern microwave systems. IEEE J. Solid-State Circuits 4(6), 409–413 (1969)

    Article  Google Scholar 

  4. Acharyya, A., Banerjee, J.P.: Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl. Nanosci. (2012). doi:10.1007/s13204-012-0172-y

    MATH  Google Scholar 

  5. Acharyya, A., Banerjee, S., Banerjee, J.P.: Optical control of millimeter-wave double-drift region silicon IMPATT device. Radioengineering 21(4), 1208–1217 (2012)

    Google Scholar 

  6. Acharyya, A., Banerjee, J.P.: Dependence of avalanche response time on photon flux incident on DDR silicon IMPATT devices. In: Proceedings of 32nd PIERS, Moscow, Russia, pp. 867–872 (2012)

    Google Scholar 

  7. Ray, U.C., Gupta, A.K.: Measurement of electrical series resistance of W-band Si IMPATT diode. In: Proceedings of 2nd Asia Pacific Microwave Conference Proceedings, China, pp. 434–437 (1988)

    Google Scholar 

  8. Misawa, T.: Multiple uniform layer approximation in analysis of negative resistance in p-n junction in breakdown. IEEE Trans. Electron Devices 14(12), 795–808 (1967)

    Article  Google Scholar 

  9. Adlerstein, M.G., Holway, L.H., Chu, S.L.G.: Measurement of series resistance in IMPATT diodes. IEEE Trans. Electron Devices 30(2), 179–182 (1983)

    Article  Google Scholar 

  10. Mitra, M., Das, M., Kar, S., Roy, S.K.: A study of the electrical series resistance of Si IMPATT diodes. IEEE Trans. Electron Devices 40(10), 1890–1893 (1993)

    Article  Google Scholar 

  11. Pal, T.K.: Series resistance of silicon millimeter wave (Ka-band) IMPATT diodes. Def. Sci. J. 59(2), 189–193 (2009)

    Google Scholar 

  12. Luy, J.F., Casel, A., Behr, W., Kasper, E.: A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans. Electron Devices 34(5), 1084–1089 (1987)

    Article  Google Scholar 

  13. Harth, W.: Large-signal series resistance of IMPATT-diodes. Arch. Elektron. Uebertragungstechnik 33, 502–504 (1979)

    Google Scholar 

  14. Acharyya, A., Banerjee, S., Banerjee, J.P.: A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-band Si IMPATTs from the electric field snap-shots. Int. J. Microw. Wirel. Technol. 5(1), 91–100 (2013)

    Article  Google Scholar 

  15. Acharyya, A., Banerjee, S., Banerjee, J.P.: Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. J. Semicond. 34(2), 024001 (2013)

    Article  Google Scholar 

  16. Acharyya, A., Banerjee, S., Banerjee, J.P.: Large-signal simulation of 94 GHz pulsed DDR silicon IMPATTs including the temperature transient effect. Radioengineering 21(4), 1218–1225 (2012)

    Google Scholar 

  17. Acharyya, A., Banerjee, S., Banerjee, J.P.: Temperature transient effect on the large-signal properties and frequency chirping in pulsed silicon DDR IMPATTs at 94 GHz. In: Proceedings of IEEE Conference CODEC 2012, Kolkata, India, pp. 1–4 (2012)

    Google Scholar 

  18. Sze, S.M., Ryder, R.M.: Microwave avalanche diodes. Proc. IEEE 59(8), 1140–1154 (1971). Special Issue on Microwave Semiconductor Devices

    Article  Google Scholar 

  19. Pal, T.K., Banerjee, J.P.: Design, fabrication and RF characterization of Ka-band silicon IMPATT diode. Int. J. Eng. Sci. Technol. 2, 4775–4790 (2010)

    Google Scholar 

  20. Grant, W.N.: Electron and hole ionization rates in epitaxial silicon. Solid-State Electron. 16, 1189–1203 (1973)

    Article  MathSciNet  Google Scholar 

  21. Canali, C., Ottaviani, G., Quaranta, A.A.: Drift velocity of electrons and holes and associated anisotropic effects in silicon. J. Phys. Chem. Solids 32, 1707 (1971)

    Article  Google Scholar 

  22. Zeghbroeck, B.V.: Principles of Semiconductor Devices. Colorado Press, Denver (2011)

    Google Scholar 

  23. Electronic Archive: New semiconductor materials, characteristics and properties. http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html (2013). Accessed 11 January 2013

  24. Hayt, W.: Engineering Electromagnetics, 4th edn. McGraw-Hill, New York (1981). ISBN 0-07-027395-2

    Google Scholar 

  25. Mass magnetic susceptibility of the elements. http://periodictable.com/Properties/A/MassMagneticSusceptibility.v.log.html (2013). Accessed 21 January 2013

  26. Density of the elements. http://periodictable.com/Properties/A/Density.v.log.html (2013). Accessed 21 January 2013

  27. Electrical conductivity of the elements. http://periodictable.com/Properties/A/ElectricalConductivity.v.log.html (2013). Accessed 21 January 2013

  28. Padovani, F.A., Stratton, R.: Field and thermionic-field emission in Schottky barriers. Solid-State Electron. 9, 695–707 (1966)

    Article  Google Scholar 

  29. Rhoderick, E.H., Williams, R.H.: Metal-Semiconductor Contacts, 2nd edn. Clarendon, Oxford (1988)

    Google Scholar 

  30. Andrews, J.M.: The role of the metal-semiconductor interface in silicon integrated circuit technology. J. Vac. Sci. Technol. 11, 972–984 (1974)

    Article  Google Scholar 

  31. Sridharan, M., Roy, S.K.: Computer studies on the widening of the avalanche zone and decrease on efficiency in silicon X-band symmetrical DDR. Electron. Lett. 14, 635–637 (1978)

    Article  Google Scholar 

  32. Sridharan, M., Roy, S.K.: Effect of mobile space charge on the small signal admittance of silicon DDR. Solid-State Electron. 23, 1001–1003 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritra Acharyya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acharyya, A., Banerjee, S. & Banerjee, J.P. Influence of skin effect on the series resistance of millimeter-wave IMPATT devices. J Comput Electron 12, 511–525 (2013). https://doi.org/10.1007/s10825-013-0470-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0470-y

Keywords

Navigation