Journal of Computational Electronics

, Volume 12, Issue 3, pp 437–447 | Cite as

First principles investigations of geometric, electronic and optical properties of 5-aminotetrazole derivatives



Density functional theory (DFT) is an important computational technique to study and predict the properties of isolated molecules. It is now a leading method for electronic structure calculations in chemistry and solid state physics. In this paper, we have investigated the geometric, electronic and optical properties of six 5-aminotetrazole derivatives employing DFT. The ground state geometries were optimized at B3LYP/6-311G∗∗ and B3LYP/6-31G∗∗ level of theories. The density of states, HOMOs and LUMOs and absorption spectra of all the compounds under study have been computed and discussed. The HOMOs are delocalized on aminotetrazole moiety in all the compounds. A comprehensible intra charge transfer has been observed from aminotetrazole moiety to entire compounds. In the absorption spectra, the wavelength of maximum absorption for triplets in all the systems is red shifted relative to their corresponding singlet wavelengths of absorption maximum. The B3LYP/6-311G∗∗ level of theory is found to give better results than B3LYP/6-31G∗∗ level of theory, to reproduce previously reported experimental data. In most of the cases B3LYP/6-31G∗∗ level of theory overestimate more the bond lengths.


DFT Tetrazole Geometric and electronic properties Absorption spectra 



The authors are thankful to Prof. Dr. A.G. Al-Sehemi, King Khalid University to provide technical support. The support and facilities provided by King Khalid University to carry out the research work are greatly acknowledged. The authors are also thankful to Prof. Ricardo Luiz Longo, Federal University of Pernambuco for helpful discussions.

Supplementary material

10825_2013_452_MOESM1_ESM.doc (118 kb)
First principles investigations of geometric, electronic and optical properties of 5-aminotetrazole derivatives (DOC 118 kB)


  1. 1.
    Koch, W., Holthausen, M.C.: A Chemist’s Guide to Density Functional Theory. Wiley-VCH, Weinheim (2000) Google Scholar
  2. 2.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Benson, F.R.: The chemistry of the tetrazoles. Chem. Rev. 41, 1–61 (1947) CrossRefGoogle Scholar
  4. 4.
    Akira, K., Takeshi, H.: Sakai Chem. Industry Co. Ltd. Japan. Kokai 7362, 634 CI 12A 82 (1973) Google Scholar
  5. 5.
    Koldobskii, G.I., Ostrovskii, V.A., Popavskii, V.S.: Advances in the chemistry of tetrazoles. Chem. Heterocycl. Compd. 17, 965–988 (1981) CrossRefGoogle Scholar
  6. 6.
    Chen, Z.X., Xiao, J.M., Xiao, H.M., Chiu, Y.N.: Studies on heats of formation for tetrazole derivatives with density functional theory B3LYP method. J. Phys. Chem. A 103, 8062–8066 (1999) CrossRefGoogle Scholar
  7. 7.
    Sadlej-Sosnowska, N.: Application of natural bond orbital analysis to delocalization and aromaticity in C-substituted tetrazoles. J. Org. Chem. 66, 8737–8743 (2001) CrossRefGoogle Scholar
  8. 8.
    Alkorta, I., Elguero, J.: A theoretical study on the tautomerism of C-carboxylic and methoxycarbonyl substituted azoles. Struct. Chem. 16, 507–514 (2005) CrossRefGoogle Scholar
  9. 9.
    Irfan, A., Cui, R., Zhang, J., Hao, L.: Push–pull effect on the charge transfer, and tuning of emitting color for disubstituted derivatives of mer-Alq3. Chem. Phys. 364, 39–45 (2009) CrossRefGoogle Scholar
  10. 10.
    Kiselev, V.G., Gritsan, N.P.: Theoretical study of the 5-aminotetrazole thermal decomposition. J. Phys. Chem. A 113, 3677–3684 (2009) CrossRefGoogle Scholar
  11. 11.
    Zhu, W., Xiao, H.: First-principles study of electronic structure, absorption spectra, and thermodynamic properties of crystalline 1H-tetrazole and its substituted derivatives. Struct. Chem. 21, 847–854 (2010) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pagacz-Kostrzewa, M., Reva, I.D., Bronisz, R., Giuliano, B.M., Fausto, R., Wierzejewska, M.: Conformational behavior and tautomer selective photochemistry in low temperature matrices: the case of 5-(1H-tetrazol-1-yl)-1,2,4-triazole. J. Phys. Chem. A 115, 5693–5707 (2011) CrossRefGoogle Scholar
  13. 13.
    Ghule, V.D., Radhakrishnan, S., Jadhav, P.M.: Computational studies on tetrazole derivatives as potential high energy materials. Struct. Chem. 22, 775–782 (2011) CrossRefGoogle Scholar
  14. 14.
    Ravi, P., Surya, T.: A DFT study on the structure–property relationship of amino-, nitro- and nitrosotetrazoles, and their N-oxides: new high energy density molecules. Struct. Chem. 23, 487–498 (2012) CrossRefGoogle Scholar
  15. 15.
    Burn, P.L., Samuel, I.D.W., Lo, S.-C.: Organic phosphorescent material and organic optoelectronic device. Patent US2010/0096983 A1, 2010 Google Scholar
  16. 16.
    Cojocaru, P., Magagnin, L., Cavallotti, P.L.: Effect of 5-phenyl-1H-tetrazole on copper dissolution for e-CMP. ECS Trans. 25, 65–69 (2010) CrossRefGoogle Scholar
  17. 17.
    Pan, J., Parham, A.H.: Organic ionic compounds, compositions and electronic devices. Patent US 7935961 B2, 2011 Google Scholar
  18. 18.
    Werrett, M.V., Chartrand, D., Gale, J.D., Hanan, G.S., MacLellan, J.G., Massi, M., Muzzioli, S., Raiteri, P., Skelton, B.W., Silberstein, M., Stagni, S.: Synthesis, structural and photophysical investigation of diimine triscarbonyl Re(I) tetrazolato complexes. Inorg. Chem. 50, 1229–1241 (2011) CrossRefGoogle Scholar
  19. 19.
    MaGee, K.D.M., Wright, P.J., Muzzioli, S., Siedlovskas, C., Raiteri, P., Baker, M.V., Brown, D.H., Stagni, S., Massi, M.: Enhanced deep-blue emission from Pt(II) complexes bound to 2-pyridyltetrazolate and an ortho-xylene-linked bis(NHC)cyclophane. Dalton Trans. 42, 4233–4236 (2013) CrossRefGoogle Scholar
  20. 20.
    D’Alessio, D., Muzzioli, S., Skelton, B.W., Stagni, S., Massi, M., Ogden, M.I.: Luminescent lanthanoid complexes of a tetrazole-functionalised calix[4]arene. Dalton Trans. 41, 4736–4739 (2012) CrossRefGoogle Scholar
  21. 21.
    Shahroosvand, H., Najafi, L., Mohajerani, E., Khabbazi, A., Nasrollahzadeh, M.: Green, near-infrared electroluminescence of novel yttrium tetrazole complexes. J. Mater. Chem. C 1, 1337–1344 (2013) CrossRefGoogle Scholar
  22. 22.
    Irfan, A., Al-Sehemi, A.G., Asiri, A.M., Nadeem, M., Alamry, K.A.: A study on the electronic and charge transfer properties in tin phthalocyanine (SnPc) derivatives by density functional theory. Comput. Theor. Chem. 977, 9–12 (2011) CrossRefGoogle Scholar
  23. 23.
    Irfan, A., Al-Sehemi, A.G., Muhammad, S., Zhang, J.: Packing effect on the transfer integrals and mobility in α,α′-bis(dithieno[3,2-b:2′,3′-d]thiophene) (BDT) and its heteroatom-substituted analogues. Aust. J. Chem. 64, 1587–1592 (2011) CrossRefGoogle Scholar
  24. 24.
    Irfan, A., Al-Sehemi, A.G., Asiri, A.M.: Donor-enhanced bridge effect on the electronic properties of triphenylamine based dyes: density functional theory investigations. J. Mol. Model. 18, 3609–3615 (2012) CrossRefGoogle Scholar
  25. 25.
    Al-Sehemi, A.G., Irfan, A., Asiri, A.M.: The DFT investigations of the electron injection in hydrazone-based sensitizers. Theor. Chem. Acc. 131, 1199 (2012) CrossRefGoogle Scholar
  26. 26.
    Jin, R., Irfan, A.: Theoretical study of coumarin derivatives as chemosensors for fluoride anion. Comput. Theor. Chem. 986, 93–98 (2012) CrossRefGoogle Scholar
  27. 27.
    Irfan, A., Hina, N., Al-Sehemi, A.G., Asiri, A.M.: Quantum chemical investigations aimed at modeling highly efficient zinc porphyrin dye sensitized solar cells. J. Mol. Model. 18, 4199–4207 (2012) CrossRefGoogle Scholar
  28. 28.
    Al-Sehemi, A.G., Irfan, A., El-Agrody, A.M.: Synthesis, characterization and DFT study of 4H-benzo[h]chromene derivatives. J. Mol. Struct. 1018, 171–175 (2012) CrossRefGoogle Scholar
  29. 29.
    Irfan, A., Al-Sehemi, A.G.: Quantum chemical study in the direction to design efficient donor-bridge-acceptor triphenylamine sensitizers with improved electron injection. J. Mol. Model. 18, 4893–4900 (2012) CrossRefGoogle Scholar
  30. 30.
    Irfan, A., Ijaz, F., Al-Sehemi, A.G., Asiri, A.M.: Quantum chemical approach toward rational designing of highly efficient oxadiazole based oligomers used in organic field effect transistors. J. Comput. Electron. 11, 374–384 (2012) CrossRefGoogle Scholar
  31. 31.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian. Gaussian, Inc., Wallingford, CT (2009) Google Scholar
  32. 32.
    Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993) CrossRefGoogle Scholar
  33. 33.
    Miehlich, B., Savin, A., Stoll, H., Preuss, H.: Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett. 157, 200–206 (1989) CrossRefGoogle Scholar
  34. 34.
    Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988) CrossRefGoogle Scholar
  35. 35.
    Xu, W., Peng, B., Chen, J., Liang, M., Cai, F.: New triphenylamine-based dyes for dye-sensitized solar cells. J. Phys. Chem. C 112, 874–880 (2008) CrossRefGoogle Scholar
  36. 36.
    McLean, D., Chandler, G.S.: Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11–18. J. Chem. Phys. 72, 5639–5648 (1980) CrossRefGoogle Scholar
  37. 37.
    Raghavachari, K., Binkley, J.S., Seeger, R., Pople, J.A.: Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J. Chem. Phys. 72, 650–654 (1980) CrossRefGoogle Scholar
  38. 38.
    Mahmood, A., Khan, I.U., Arshad, M.N., Ahmed, J.: N-[Amino(azido)methylidene]-4-methylbenzenesulfonamide. Acta Crystallogr., Sect. E 67, o2140 (2011) CrossRefGoogle Scholar
  39. 39.
    Khan, I.U., Mahmood, A., Arshad, M.N.: 1-azido-N′-(phenylsulfonyl)-methanimidamide. Acta Crystallogr., Sect. E 67, o2703 (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Fundamental ChemistryFederal University of PernambucoRecifeBrazil
  2. 2.Department of Chemistry, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations