Journal of Computational Electronics

, Volume 12, Issue 2, pp 275–280 | Cite as

Two-dimensional modeling of subthreshold current and subthreshold swing of double-material-gate (DMG) strained-Si (s-Si) on SGOI MOSFETs

  • Mirgender Kumar
  • Sarvesh Dubey
  • Pramod Kumar Tiwari
  • S. Jit


The present paper proposes the surface potential based two-dimensional (2D) analytical models of subthreshold current and subthreshold swing of nanoscale double-material-gate (DMG) strained-Si (s-Si) on Silicon-Germanium-on-Insulator (SGOI) MOSFETs. The surface potential expression has been directly taken from our previous reported work. The effect of various device parameters on subthreshold current and swing like Ge mole fraction, Si film thickness, gate-length ratio and various combinations of control/screen gate work-functions have been discussed. The validity of the present 2D model is verified by using ATLASTM, a 2D device simulator from Silvaco.


Double-material-gate (DMG) Strained-Si (s-Si) Silicon-germanium-on-insulator (SGOI) Subthreshold current and subthreshold swing 


  1. 1.
    International Technology Roadmap for Semiconductors (2011) Google Scholar
  2. 2.
    Moore, G.E.: Progress in digital integrated electronics. Int. Elec. Dev. Meet. 11–13 (1975) Google Scholar
  3. 3.
    Leong, M., Doris, B., Kedzierski, J., Rim, K., Yang, M.: Silicon device scaling to the sub-10-nm regime. Science 306, 2057–2060 (2004) CrossRefGoogle Scholar
  4. 4.
    Kalna, K., Martinez, A., Svizhenko, A., Anantram, M.P., Barker, J.R., Asenov, A.: NEGF simulations of the effect of strain on scaled double gate nanoMOSFETs. J. Comput. Electron. 7, 288–292 (2008) CrossRefGoogle Scholar
  5. 5.
    Fischetti, M.V.: Scaling MOSFETs to the limit: a physicists’s perspective. J. Compt. Electron. 2, 73–79 (2003) CrossRefGoogle Scholar
  6. 6.
    Saxena, M., Haldar, S., Gupta, M., Gupta, R.S.: Design consideration for novel device architecture: hetero-material double-gate (HEM-DG) MOSFET with sub-100 nm gate length. Solid State Electronics 48, 1169–1174 (2004) CrossRefGoogle Scholar
  7. 7.
    Long, W., Chin, K.K.: Dual Material Gate Field Effect Transistor (DMGFET). Tech. Dig.—Int. Electron Devices Meet., pp. 549–551 (1997) CrossRefGoogle Scholar
  8. 8.
    Tiwari, P.K., Dubey, S., Singh, M., Jit, S.: A two-dimensional analytical model for threshold voltage of short-channel triple-material double-gate metal-oxide-semiconductor field-effect transistors. J. Applied Physics 108, 074508 (2010) CrossRefGoogle Scholar
  9. 9.
    Polishchuk, I., Ranade, P., King, T.J., Hu, C.: Dual work function metal gate CMOS technology using metal inter-diffusion. IEEE Electron Device Lett. 22, 444–446 (2001) CrossRefGoogle Scholar
  10. 10.
    Guillaumot, B.: 75 nm damascene metal gate and high-k integration for advanced CMOS devices. In: Proc. IEDM, pp. 355–358 (2002) Google Scholar
  11. 11.
    Liu, J., Wen, H.C., Lu, J.P., Kwong, D.L.: Dual-work-function metal gates by full silicidation of poly-Si with Co–Nibi-layers. IEEE Electron Device Letters 26, 228–230 (2005) CrossRefGoogle Scholar
  12. 12.
    Zhang, Z., Song, S.C., Huffman, C., Hussain, M.M., Barnett, J., Moumen, N., Alshareef, H.N., Majhi, P., Sim, J.H., Bae, S.H., Lee, B.H.: Integration of dual metal gate CMOS on high-k dielectric sutilizing a metal wet etch process. Electro-chem. Solid-State Lett. 8, 271–274 (2005) CrossRefGoogle Scholar
  13. 13.
    Kumar, M., Dubey, S., Tiwari, P.K., Jit, S.: An analytical model of threshold voltage for short-channel double-material-gate (DMG) strained-Si (s-Si) on silicon-germanium (SGOI) MOSFETs. J. Compt. Electron. (2012). doi: 10.1007/s10825-012-0429-4 Google Scholar
  14. 14.
    Yeh, P.C., Fossum, J.G.: Physical subthreshold MOSFET modeling applied to viable design of deep-submicrometer fully depleted SO1 low-voltage CMOS technology. IEEE Trans. Electron Devices 42, 1605–1613 (1995) CrossRefGoogle Scholar
  15. 15.
    Hamid, H.A.E., Guitart, J.R., Iñíguez, B.: Two-dimensional analytical threshold voltage and subthreshold swing models of undoped symmetric double-gate MOSFETs. IEEE Trans. Electron Devices 54, 1402–1408 (2007) CrossRefGoogle Scholar
  16. 16.
    ATLAS manual: Silvaco Int. Santa Clara (2008) Google Scholar
  17. 17.
    Mizuno, T., Takagi, S., Sugiyama, N., Koga, J., Tezuka, T., et al.: High performance strained-Si p-MOSFETs on SiGe-on-insulator substrates fabricated by SIMOX technology. In: Proc. IEDM, pp. 134–135 (1999) Google Scholar
  18. 18.
    Wasler, J., Hoyt, J.L., Gibbons, J.F.: NMOS and PMOS transistors fabricated in strained silicon/relaxed silico-germanium structures. In: Proc. IEDM, pp. 1000–1002 (1992) Google Scholar
  19. 19.
    Numata, T., Irisawa, T., Tezuka, T., Koga, J., et al.: Performance enhancement of partially and fully depleted strained-SOI MOSFETs. IEEE Trans. Electron Devices 53, 1030–1038 (2006) CrossRefGoogle Scholar
  20. 20.
    Dey, A., Chakravorty, A., Dasgupta, N., Dasgupta, A.: Analytical model of subthreshold current and slope for asymmetric 4-T and 3-T double-gate MOSFETs. IEEE Trans. Electron Devices 55, 3442–3449 (2008) CrossRefGoogle Scholar
  21. 21.
    Chen, Q., Agrawal, B., Meindl, J.D.: A comprehensive analytical subthreshold swing (S) model for double-gate MOSFETs. IEEE Trans. Electron Devices 49, 1086–1090 (2002) CrossRefGoogle Scholar
  22. 22.
    Hamid, H.A.E., Guitart, J.R., Iniguez, B.: Two-dimensional analytical threshold voltage and subthreshold swing models of undoped symmetric double-gate MOSFETs. IEEE Trans. Electron Devices 54, 1402–1408 (2007) CrossRefGoogle Scholar
  23. 23.
    Jankovic, N.D., Armstrong, G.A.: Comparative analysis of the DC performance of DG MOSFETs on highly-doped and near-intrinsic silicon layers. Microelectron. J. 35, 647–653 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mirgender Kumar
    • 1
  • Sarvesh Dubey
    • 1
  • Pramod Kumar Tiwari
    • 2
  • S. Jit
    • 1
  1. 1.Department of Electronics EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  2. 2.Department of Electronics and Communication EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations