Journal of Computational Electronics

, Volume 12, Issue 2, pp 85–93 | Cite as

Bandgap nanoengineering of graphene tunnel diodes and tunnel transistors to control the negative differential resistance

  • Viet Hung Nguyen
  • Jérôme Saint-Martin
  • Damien Querlioz
  • Fulvio Mazzamuto
  • Arnaud Bournel
  • Yann-Michel Niquet
  • Philippe Dollfus


By means of numerical simulation based on the Green’s function formalism on a tight binding Hamiltonian, we investigate different possibilities of achieving a strong effect of negative differential resistance in graphene tunnel diodes, the operation of which is controlled by the interband tunneling between both sides of the PN junction. We emphasize on different approaches of bandgap nanoengineering, in the form of nanoribbons (GNRs) or nanomeshes (GNMs), which can improve the device behaviour. In particular, by inserting a small or even zero bandgap section in the transition region separating the doped sides of the junction, the peak current and the peak-to-valley ratio (PVR) are shown to be strongly enhanced and weakly sensitive to the length fluctuations of the transition region, which is an important point regarding applications. The study is extended to the tunneling FET which offers the additional possibility of modulating the interband tunneling and the PVR. The overall work suggests the high potential of GNM lattices for designing high performance devices for either analog or digital applications.


Graphene device Dirac fermions Green’s function Quantum transport Negative differential resistance Tunnel diode Tunnel transistor 



This work was partially supported by the French ANR through projects NANOSIM_GRAPHENE (ANR-09-NANO-016) and MIGRAQUEL (ANR-10-BLAN-0304). The work at Hanoi was supported by the Vietnamese National Foundation for Science and Technology Development (NAFOSTED) under Projects No. and


  1. 1.
    Mizuta, H., Tanoue, T.: The Physics and Application of Resonant Tunnelling Diodes. Cambridge University Press, Cambridge (1995) CrossRefGoogle Scholar
  2. 2.
    Katsnelson, M.I., Novoselov, K.S., Geim, A.K.: Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006) CrossRefGoogle Scholar
  3. 3.
    Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010) CrossRefGoogle Scholar
  4. 4.
    Cresti, A., Grosso, G., Parravicini, G.P.: Valley-valve effect and even-odd chain parity in p-n graphene junctions. Phys. Rev. B 77, 233402 (2008) CrossRefGoogle Scholar
  5. 5.
    Wang, Z.F., Li, Q., Shi, Q.W., Wang, X., Yang, J., Hou, J.G., Chen, J.: Chiral selective tunneling induced negative differential resistance in zigzag graphene nanoribbon: a theoretical study. Appl. Phys. Lett. 92, 133114 (2008) CrossRefGoogle Scholar
  6. 6.
    Nam Do, V., Dollfus, P.: Negative differential resistance in zigzag-edge graphene nanoribbon junctions. J. Appl. Phys. 107, 063705 (2010) CrossRefGoogle Scholar
  7. 7.
    Cheraghchi, H., Esmailzade, H.: A gate-induced switch in zigzag graphene nanoribbons and charging effects. Nanotechnology 21, 205306 (2010) CrossRefGoogle Scholar
  8. 8.
    Habib, K.M.M., Zahid, F., Lake, R.K.: Negative differential resistance in bilayer graphene nanoribbons. Appl. Phys. Lett. 98, 192112 (2011) CrossRefGoogle Scholar
  9. 9.
    Ren, H., Li, Q.-X., Luo, Y., Yang, J.: Graphene nanoribbon as a negative differential resistance device. Appl. Phys. Lett. 94, 173110 (2009) CrossRefGoogle Scholar
  10. 10.
    Teong, H., Lam, K.-T., Khalid, S.B., Liang, G.: Shape effects in graphene nanoribbon resonant tunneling diodes: a computational study. J. Appl. Phys. 105, 084317 (2009) CrossRefGoogle Scholar
  11. 11.
    Hung Nguyen, V., Bournel, A., Dollfus, P.: Resonant tunneling structures based on epitaxial graphene on SiC. Semicond. Sci. Technol. 26, 125012 (2011) CrossRefGoogle Scholar
  12. 12.
    González, J.W., Pacheco, M., Rosales, L., Orellana, P.A.: Transport properties of graphene quantum dots. Phys. Rev. B 83, 155450 (2011) CrossRefGoogle Scholar
  13. 13.
    Mazzamuto, F., Hung Nguyen, V., Apertet, Y., Caër, C., Chassat, C., Saint-Martin, J., Dollfus, P.: Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B 83, 235426 (2011) CrossRefGoogle Scholar
  14. 14.
    Rodríguez-Vargas, I., Madrigal-Melchor, J., Oubram, O.: Resonant tunneling through double barrier graphene systems: a comparative study of Klein and non-Klein tunneling structures. J. Appl. Phys. 112, 073711 (2012) CrossRefGoogle Scholar
  15. 15.
    Hung Nguyen, V., Mazzamuto, F., Bournel, A., Dollfus, P.: Resonant tunneling diode based on graphene/h-BN heterostructure. J. Phys. D, Appl. Phys. 45, 325104 (2012) CrossRefGoogle Scholar
  16. 16.
    Ferreira, G.J., Leuenberger, M.N., Loss, D., Egues, J.C.: Low-bias negative differential resistance in graphene nanoribbon superlattices. Phys. Rev. B 84, 125453 (2011) CrossRefGoogle Scholar
  17. 17.
    Nam Do, V., Hung Nguyen, V., Dollfus, P., Bournel, A.: Electronic transport and spin-polarized effects of relativistic-like particles in graphene structures. J. Appl. Phys. 104, 063708 (2008) CrossRefGoogle Scholar
  18. 18.
    Wu, Y., Farmer, D.B., Zhu, W., Han, S.J., Dimitrakopoulos, C.D., Bol, A.A., Avouris, P., Lin, Y.-M.: Three-terminal graphene negative differential resistance devices. ACS Nano 6, 2610–2616 (2012) CrossRefGoogle Scholar
  19. 19.
    Wu, Y., Perebeinos, V., Lin, Y.-M., Low, T., Xia, F., Avouris, P.: Quantum behavior of graphene transistors near the scaling limit. Nano Lett. 12, 1417–1423 (2012) CrossRefGoogle Scholar
  20. 20.
    Majumdar, K., Kallatt, S., Bhat, N.: High field carrier transport in graphene: insights from fast current transient. Appl. Phys. Lett. 101, 123505 (2012) CrossRefGoogle Scholar
  21. 21.
    Alarcón, A., Hung Nguyen, V., Berrada, S., Saint-Martin, J., Bournel, A., Dollfus, P.: Negative differential conductance and chiral effects in graphene field-effect transistors. In: Proc. IWCE 2012 (2012). doi: 10.1109/IWCE.2012.6242820 Google Scholar
  22. 22.
    Hung Nguyen, V., Bournel, A., Dollfus, P.: Large peak-to-valley ratio of negative differential conductance in graphene p-n junctions. J. Appl. Phys. 109, 093706 (2011) CrossRefGoogle Scholar
  23. 23.
    Fiori, G.: Negative differential resistance in mono and bilayer graphene p-n junctions. IEEE Electron Device Lett. 32, 1334–1336 (2011) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hung Nguyen, V., Mazzamuto, F., Saint-Martin, J., Bournel, A., Dollfus, P.: Giant effect of negative differential conductance in graphene nanoribbon p-n heterojunctions. Appl. Phys. Lett. 99, 042105 (2011) CrossRefGoogle Scholar
  25. 25.
    Hung Nguyen, V., Mazzamuto, F., Saint-Martin, J., Bournel, A., Dollfus, P.: Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect. Nanotechnology 23, 065201 (2012) CrossRefGoogle Scholar
  26. 26.
    Hung Nguyen, V., Niquet, Y.-M., Dollfus, P.: Gate-controllable negative differential conductance in graphene tunneling transistors. Semicond. Sci. Technol. 27, 105018 (2012) CrossRefGoogle Scholar
  27. 27.
    Giovannetti, G., Khomyakov, P.A., Brocks, G., Kelly, P.J., van den Brink, J.: Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B 76, 073103 (2007) CrossRefGoogle Scholar
  28. 28.
    Kharche, N., Nayak, S.K.: Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate. Nano Lett. 11, 5274–5278 (2011) CrossRefGoogle Scholar
  29. 29.
    Xu, Y., Guo, Z., Chen, H., Yuan, Y., Lou, J., Lin, X., Gao, H., Chen, H., Yu, B.: In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures. Appl. Phys. Lett. 99, 133109 (2011) CrossRefGoogle Scholar
  30. 30.
    Fan, Y., Zhao, M., Wang, Z., Zhang, X., Zhang, H.: Tunable electronic structures of graphene/boron nitride heterobilayers. Appl. Phys. Lett. 98, 083103 (2011) CrossRefGoogle Scholar
  31. 31.
    Zomer, P.J., Dash, S.P., Tombros, N., van Wees, B.J.: A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011) CrossRefGoogle Scholar
  32. 32.
    Bai, J., Zhong, X., Jiang, S., Huang, Y., Duan, X.: Graphene nanomesh. Nat. Nanotechnol. 5, 190–194 (2010) CrossRefGoogle Scholar
  33. 33.
    Oswald, W., Wu, Z.: Energy gaps in graphene nanomeshes. Phys. Rev. B 85, 115431 (2012) CrossRefGoogle Scholar
  34. 34.
    Hung Nguyen, V., Chung Nguyen, M., Viet Nguyen, H., Dollfus, P.: Disorder effects on energy bandgap and electronic transport in graphene-nanomesh-based structures. J. Appl. Phys. 113, 013702 (2012) CrossRefGoogle Scholar
  35. 35.
    Yang, H.-X., Chshiev, M., Boukhvalov, D.W., Waintal, X., Roche, S.: Inducing and optimizing magnetism in graphene nanomeshes. Phys. Rev. B 84, 214404 (2011) CrossRefGoogle Scholar
  36. 36.
    Hung Nguyen, V., Nam Do, V., Bournel, A., Lien Nguyen, V., Dollfus, P.: Controllable spin-dependent transport in armchair graphene nanoribbon structures. J. Appl. Phys. 106, 053710 (2009) CrossRefGoogle Scholar
  37. 37.
    Reich, S., Maultzsch, J., Thomsen, C.: Tight-binding description of graphene. Phys. Rev. B 66, 035412 (2002) CrossRefGoogle Scholar
  38. 38.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009) CrossRefGoogle Scholar
  39. 39.
    Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006) CrossRefGoogle Scholar
  40. 40.
    Fiori, G., Iannaccone, G.: On the possibility of tunable-gap bilayer graphene FET. IEEE Electron Device Lett. 30, 261–264 (2009) CrossRefGoogle Scholar
  41. 41.
    Guo, J., Datta, S., Lundstrom, M., Anantram, M.P.: Towards multi-scale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2, 257–260 (2004) CrossRefGoogle Scholar
  42. 42.
    Lopez Sancho, M.P., Lopez Sancho, J.M., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F, Met. Phys. 14, 1205–1215 (1984) CrossRefGoogle Scholar
  43. 43.
    Anantram, M.P., Lundstrom, M.S., Nikonov, D.E.: Modeling of nanoscale devices. Proc. IEEE 96, 1511–1550 (2008) CrossRefGoogle Scholar
  44. 44.
    Ren, Z.: Nanoscale MOSFETs: physics, simulation, and design. Ph.D. Dissertation, Purdue University, West Lafayette, USA (2001) Google Scholar
  45. 45.
    Huard, B., Sulpizio, J.A., Stander, N., Todd, K., Yang, B., Goldhaber-Gordon, D.: Transport measurements across a tunable potential barrier in graphene. Phys. Rev. Lett. 98, 236803 (2007) CrossRefGoogle Scholar
  46. 46.
    Brenner, K., Murali, R.: Single step, complementary doping of graphene. Appl. Phys. Lett. 96, 063104 (2010) CrossRefGoogle Scholar
  47. 47.
    Liu, G., Wu, Y., Lin, Y.-M., Farmer, D.B., Ott, J.A., Bruley, J., Grill, A., Avouris, P., Pfeiffer, D., Balandin, A.A., Dimitrakopoulos, C.: Epitaxial graphene nanoribbon array fabrication using BCP-assisted nanolithography. ACS Nano 6, 6786–6792 (2012) CrossRefGoogle Scholar
  48. 48.
    Liang, X., Jung, Y.-S., Wu, S., Ismach, A., Olynick, D.L., Cabrini, S., Bokor, J.: Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett. 10, 2454–2460 (2010) CrossRefGoogle Scholar
  49. 49.
    Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010) CrossRefGoogle Scholar
  50. 50.
    Leburton, J.-P., Kolodzey, J., Briggs, S.: Bipolar tunneling field-effect transistor: a three terminal negative differential resistance device for high-speed applications. Appl. Phys. Lett. 52, 1608–1610 (1988) CrossRefGoogle Scholar
  51. 51.
    Omura, Y.: Negative conductance properties in extremely thin silicon-on-insulator (SOI) insulated-gate pn-junction devices (SOI surface tunnel transistors). Jpn. J. Appl. Phys. 35, L1401–L1403 (1996) CrossRefGoogle Scholar
  52. 52.
    Koga, J., Toriumi, A.: Three-terminal silicon surface junction tunneling device for room temperature operation. IEEE Electron Device Lett. 20, 529–531 (1999) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Viet Hung Nguyen
    • 1
    • 2
    • 3
  • Jérôme Saint-Martin
    • 1
  • Damien Querlioz
    • 1
  • Fulvio Mazzamuto
    • 1
  • Arnaud Bournel
    • 1
  • Yann-Michel Niquet
    • 3
  • Philippe Dollfus
    • 1
  1. 1.Institute of Fundamental Electronics (IEF), CNRS, UMR 8622Univ. Paris-SudOrsayFrance
  2. 2.Center for Computational Physics, Institute of PhysicsVietnam Academy of Science and TechnologyHanoiVietnam
  3. 3.L_Sim, SP2M, UMR-E CEA/UJF-Grenoble 1INACGrenobleFrance

Personalised recommendations