Journal of Computational Electronics

, Volume 12, Issue 1, pp 20–28 | Cite as

An analytical model of threshold voltage for short-channel double-material-gate (DMG) strained-Si (s-Si) on Silicon-Germanium-on-Insulator (SGOI) MOSFETs

  • Mirgender Kumar
  • Sarvesh Dubey
  • Pramod Kumar Tiwari
  • S. Jit


In this paper, an analytical short-channel threshold voltage model is presented for double-material-gate (DMG) strained-Si (s-Si) on Silicon-Germanium-on-Insulator (SGOI) MOSFETs. The threshold voltage model is based on the “virtual cathode” concept which is determined by the two-dimensional (2D) channel potential of the device. The channel potential has been determined by solving 2D Poisson’s equation with suitable boundary conditions in both the strained-Si layer and relaxed Si1−x Ge x layer. The effects of various device parameters like Ge mole fraction, Si film thickness, SiGe thickness and gate-length ratio have been considered on threshold voltage. Further, the drain induced barrier lowering (DIBL) has also been estimated. The validity of the present 2D analytical model is verified by using ATLAS™, a 2D device simulator from Silvaco.


Double-material-gate (DMG) Strained-Si (s-Si) Silicon-Germanium-on-Insulator (SGOI) MOSFET 


  1. 1.
    Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices. Cambridge University Press, Cambridge (1998) Google Scholar
  2. 2.
    Thompson, S.E., Parthasarathy, S.: Moore’s law: the future of Si microelectronics. Mater. Today 9, 20–25 (2006) CrossRefGoogle Scholar
  3. 3.
    Moore, G.E.: Progress in digital integrated electronics. In: Int. Elec. Dev. Meet., pp. 11–13 (1975) Google Scholar
  4. 4.
    Chaudhry, A., Kumar, M.J.: Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review. IEEE Trans. Device Mater. Reliab. 4, 99–109 (2004) CrossRefGoogle Scholar
  5. 5.
    Ieong, M., Doris, B., Kedzierski, J., Rim, K., Yang, M.: Silicon device scaling to the sub-10 nm regime. Science 306, 2057–2060 (2004) CrossRefGoogle Scholar
  6. 6.
    Kuchipudi, R., Mahmoodi, H.: Strain silicon optimization for memory and logic in nano-scale CMOS. In: IEEE Proc. Int. Symp. on Quality Electron Design (ISQED) (2007) Google Scholar
  7. 7.
    Barraud, S., Clavelier, L., Ernst, T.: Electron transport in SOI strained and GeOI MOSFET by Monte-Carlo simulation. Solid-State Electron. 49, 1090 (2005) CrossRefGoogle Scholar
  8. 8.
    Fathipour, M., Omidbakhsh, S., Khodayari, K.: Improvement in silicon on insulator devices using strained Si/SiGe technology for high performance in RF integrated circuits. World Acad. Sci., Eng. Technol. 48, 461–464 (2010) Google Scholar
  9. 9.
    Colinge, J.P.: Multiple-gate SOI MOSFETs. Solid-State Electron. 48, 897–905 (2004) CrossRefGoogle Scholar
  10. 10.
    Park, J.T., Colinge, J.P.: Multiple-gate SOI MOSFETs: device design guidelines. IEEE Trans. Electron Devices 49, 2222–2229 (2002) CrossRefGoogle Scholar
  11. 11.
    Goel, K., Saxena, M., Gupta, M., Gupta, R.S.: Modeling and simulation of a nanoscale three-region tri-material gate stack (TRIMGAS) MOSFET for improved carrier transport efficiency and reduced hot-electron effects. IEEE Trans. Electron Devices 53, 1623–1633 (2006) CrossRefGoogle Scholar
  12. 12.
    Mahato, S.S., Chakraborty, P., Maiti, T.K., Bera, M.K., Mahata, C., Sengupta, M., Chakraborty, A., Sarkar, S.K., Maiti, C.K.: DIBL in short-channel strained-Si n-MOSFET. In: 15th International Symposium on Physical and Failure Analysis of Integrated Circuits (2008) Google Scholar
  13. 13.
    Sharan, N., Rana, A.K.: Impact of strain and channel thickness on performance of biaxial strained silicon MOSFETs. Int. J. VLSI Des. Commun. Syst. 2, 61–71 (2011) CrossRefGoogle Scholar
  14. 14.
    Saxena, M., Haldar, S., Gupta, M., Gupta, R.S.: Design consideration for novel device architecture: hetero-material double-gate (HEM-DG) MOSFET with sub-100 nm gate length. Solid-State Electron. 48, 1169–1174 (2004) CrossRefGoogle Scholar
  15. 15.
    Suzuki, K., Tosaka, Y., Sugii, T.: Analytical threshold voltage model for short channel double-gate SO1 MOSFET’s. IEEE Trans. Electron Devices 43, 1166–1168 (1996) CrossRefGoogle Scholar
  16. 16.
    Zhou, X., Long, W.: A novel hetero-material gate (HNG) MOSFET for deep-submicron ULSI technology. IEEE Trans. Electron Devices 45, 2546–2548 (1998) CrossRefGoogle Scholar
  17. 17.
    Wesler, J., Hoyt, J.L., Gibbons, J.F.: N-MOS and p-MOS transistors fabricated in strained silicon/relaxed silicon-germanium structures. In: Int. Elec. Dev. Meet., pp. 1000–1002 (1992) Google Scholar
  18. 18.
    Minjoo, L.L., Fitzgerald, E.A.: Strained Si, SiGe and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistor. J. Appl. Phys. 97, 011101 (2005) CrossRefGoogle Scholar
  19. 19.
    International Technology Roadmap for Semiconductors (2004) Google Scholar
  20. 20.
    Jin, L., Hongxia, L., Bin, L., Lei, C., Bo, Y.: A two-dimensional threshold voltage analytical model of DMG strained-Si-on-insulator MOSFETs. J. Semicond. 31, 044005 (2010) CrossRefGoogle Scholar
  21. 21.
    Gamiz, F., Cassinello, P.C., Roldan, J.B., Molinos, F.J.: Electron transport in strained Si inversion layers grown on SiGe-on-insulator substrates. J. Appl. Phys. 92, 288–295 (2002) CrossRefGoogle Scholar
  22. 22.
    Cheng, Z., Fitzgerald, E.A., Antoniadis, D.A.: SiGe-on-Insulator (SGOI) Technology and MOSFET Fabrication.
  23. 23.
    Cheng, Z.Y., Cunie, M.T., Leitz, C.W., Taraschi, G., Pitera, A., Lee, M.L., Langdo, T.A., Hop, J.L., Antoniadis, D.A., Fitzgerald, E.A.: SiGe-On-Insulator (SGOI): substrate preparation and MOSFET fabrication for electron mobility evaluation. In: IEEE International SOI Conference (2001) Google Scholar
  24. 24.
    Dubey, S., Tiwari, P.K., Jit, S.: A two-dimensional model for the potential distribution and threshold voltage of short-channel double-gate metal-oxide-semiconductor field-effect transistors with a vertical Gaussian-like doping profile. J. Appl. Phys. 108, 034518 (2010) CrossRefGoogle Scholar
  25. 25.
    ATLAS manual: Silvaco Int. Santa Clara (2008) Google Scholar
  26. 26.
    Numata, T., Mizuno, T., Tezuka, T., Koga, J., Takagi, S.: Control of threshold-voltage and short-channel effects in ultrathin strained-SOI CMOS devices. IEEE Trans. Electron Devices 52, 1780–1786 (2005) CrossRefGoogle Scholar
  27. 27.
    Zhang, W., Fossum, J.G.: On the threshold voltage of strained-Si-Si1−xGex MOSFETs. IEEE Trans. Electron Devices 52, 263–268 (2005) CrossRefGoogle Scholar
  28. 28.
    Young, K.K.: Short-channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36, 399–402 (1989) CrossRefGoogle Scholar
  29. 29.
    Kumar, M.J., Venkataraman, V., Nawal, S.: Comprehensive approach to modeling threshold voltage of strained silicon SOI MOSFETs. J. Comput. Electron. 6, 439–444 (2007) CrossRefGoogle Scholar
  30. 30.
    Conde, A.O., Sanchez, F.J.G., Liou, J.J., Cerdeira, A., Estrada, M., Yue, Y.: A review of recent MOSFET threshold voltage extraction methods. Microelectron. Reliab. 42, 583–596 (2002) CrossRefGoogle Scholar
  31. 31.
    Lundstrom, M.: Elementary scattering theory of the Si MOSFET. IEEE Electron Device Lett. 18, 361–363 (1997) CrossRefGoogle Scholar
  32. 32.
    Jankovic, N.D., Armstrong, G.A.: Comparative analysis of the DC performance of DG MOSFETs on highly-doped and near-intrinsic silicon layers. Microelectron. J. 35, 647–653 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Mirgender Kumar
    • 1
  • Sarvesh Dubey
    • 1
  • Pramod Kumar Tiwari
    • 2
  • S. Jit
    • 1
  1. 1.Department of Electronics EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  2. 2.Department of Electronics and Communication EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations