Skip to main content
Log in

Doping of SiGe core-shell nanowires

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Dopant deactivation in pure Si and pure Ge nanowires (NWs) can compromise the efficiency of the doping process at nanoscale. Quantum confinement, surface segregation and dielectric mismatch, in different ways, strongly reduce the carrier generation induced by intentional addition of dopants. This issue seems to be critical for the fabrication of high-quality electrical devices for various future applications, such as photovoltaics and nanoelectronics. By means of Density Functional Theory simulations, we show how this limit can be rode out in core-shell silicon-germanium NWs (SiGe NWs), playing on the particular energy band alignment that comes out at the Si/Ge interface. We demonstrate how, by choosing the appropriate doping configurations, it is possible to obtain a 1-D electron or hole gas, which has not to be thermally activated and which can furnish carriers also at very low temperatures. Our findings suggest core-shell NWs as possible building blocks for high-speed electronic device and new generation solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We take for simplicity the case of Si or any other group-IV semiconductor.

References

  1. Cui, Y., Lieber, C.M.: Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505), 851–853 (2001)

    Article  Google Scholar 

  2. Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H., Lieber, C.M.: Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441(7092), 489 (2006)

    Article  Google Scholar 

  3. Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K.H., Lieber, C.M.: Logic gates and computation from assembled nanowire building blocks. Science 294(5545), 1313–1317 (2001)

    Article  Google Scholar 

  4. Duan, X., Huang, Y., Lieber, C.M.: Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2(5), 487–490 (2002)

    Article  Google Scholar 

  5. Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)

    Article  Google Scholar 

  6. Nam, S., Jiang, X., Xiong, Q., Ham, D., Lieber, C.M.: Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. Proc. Natl. Acad. Sci. USA 106(50), 21035–21038 (2009)

    Article  Google Scholar 

  7. Rurali, R.: Colloquium: Structural, electronic, and transport properties of silicon nanowires. Rev. Mod. Phys. 82(1), 427–449 (2010)

    Article  Google Scholar 

  8. Diarra, M., Niquet, Y.M., Delerue, C., Allan, G.: Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement. Phys. Rev. B 75(4), 045301 (2007)

    Article  Google Scholar 

  9. Niquet, Y.M., Genovese, L., Delerue, C., Deutsch, T.: Ab initio calculation of the binding energy of impurities in semiconductors: Application to Si nanowires. Phys. Rev. B 81(16), 161301 (2010)

    Article  Google Scholar 

  10. Björk, M.T., Schmid, H., Knoch, J., Riel, H., Riess, W.: Donor deactivation in silicon nanostructures. Nat. Nanotechnol. 4(2), 103 (2008)

    Article  Google Scholar 

  11. Calderón, M.J., Verduijn, J., Lansbergen, G.P., Tettamanzi, G.C., Rogge, S., Koiller, B.: Heterointerface effects on the charging energy of the shallow D ground state in silicon: Role of dielectric mismatch. Phys. Rev. B 82(7), 075317 (2010)

    Article  Google Scholar 

  12. Koren, E., Berkovitch, N., Rosenwaks, Y.: Measurement of active dopant distribution and diffusion in individual silicon nanowires. Nano Lett. 10(4), 1163–1167 (2010)

    Article  Google Scholar 

  13. Bryant, G.W.: Hydrogenic impurity states in quantum-well wires. Phys. Rev. B 29(12), 6632–6639 (1984)

    Article  Google Scholar 

  14. Rurali, R., Aradi, B., Frauenheim, T., Gali, A.: Donor levels in Si nanowires determined by hybrid-functional calculations. Phys. Rev. B 79(11), 115303 (2009)

    Article  Google Scholar 

  15. Niquet, Y.M., Lherbier, A., Quang, N.H., Fernández-Serra, M.V., Blase, X., Delerue, C.: Electronic structure of semiconductor nanowires. Phys. Rev. B 73(16), 165319 (2006)

    Article  Google Scholar 

  16. Peelaers, H., Partoens, B., Peeters, F.M.: Formation and segregation energies of B and P doped and BP codoped silicon nanowires. Nano Lett. 6(12), 2781–2784 (2006)

    Article  Google Scholar 

  17. Fernández-Serra, M.V., Adessi, C., Blase, X.: Surface segregation and backscattering in doped silicon nanowires. Phys. Rev. Lett. 96(16), 166805 (2006)

    Article  Google Scholar 

  18. Cui, Y., Duan, X., Hu, J., Lieber, C.: Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104(22), 5213–5216 (2000)

    Article  Google Scholar 

  19. Yu, J.Y., Chung, S.W., Heath, J.R.: Silicon nanowires: Preparation, device fabrication, and transport properties. J. Phys. Chem. B 104(50), 11864–11870 (2000)

    Article  Google Scholar 

  20. Wang, Y., Lew, K.K., Ho, T.T., Pan, L., Novak, S.W., Dickey, E.C., Redwing, J.M., Mayer, T.S.: Use of phosphine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires. Nano Lett. 5(11), 2139–2143 (2005)

    Article  Google Scholar 

  21. Nah, J., Varahramyan, K., Liu, E.S., Banerjee, S.K., Tutuc, E.: Doping of Ge-Si x Ge1−x core-shell nanowires using low energy ion implantation. Appl. Phys. Lett. 93(20), 203108 (2008)

    Article  Google Scholar 

  22. Nah, J., Liu, E.S., Shahrjerdi, D., Varahramyan, K.M., Banerjee, S.K., Tutuc, E.: Realization of dual-gated Ge-Si x Ge1−x core-shell nanowire field effect transistors with highly doped source and drain. Appl. Phys. Lett. 94(6), 063117 (2009)

    Article  Google Scholar 

  23. Lauhon, L.J., Gudiksen, M.S., Wang, D., Lieber, C.M.: Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420(6911), 57 (2002)

    Article  Google Scholar 

  24. Amato, M., Ossicini, S., Rurali, R.: Band-offset driven efficiency of the doping of SiGe core-shell nanowires. Nano Lett. 11(2), 594–598 (2011)

    Article  Google Scholar 

  25. Lu, W., Xiang, J., Timko, B.P., Wu, Y., Lieber, C.M.: One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proc. Natl. Acad. Sci. USA 102(29), 10046 (2005)

    Article  Google Scholar 

  26. Dayeh, S.A., Gin, A.V., Picraux, S.T.: Advanced core/multishell germanium/silicon nanowire heterostructures: Morphology and transport. Appl. Phys. Lett. 98(16), 163112 (2011)

    Article  Google Scholar 

  27. Ossicini, S., Amato, M., Guerra, R., Palummo, M., Pulci, O.: Silicon and germanium nanostructures for photovoltaic applications: Ab-initio results. Nanoscale Res. Lett. 5(10), 1637–1649 (2010)

    Article  Google Scholar 

  28. Joshi, G., Lee, H., Lan, Y., Wang, X., Zhu, G., Wang, D., Gould, R.W., Cuff, D.C., Tang, M.Y., Dresselhaus, M.S., Chen, G., Ren, Z.: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8(12), 4670–4674 (2008)

    Article  Google Scholar 

  29. Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., Lieber, C.M.: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872), 617–620 (2002)

    Article  Google Scholar 

  30. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B) (1964)

  31. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A) (1965)

  32. Perdew, J.P., Kurt, S.: Primer in Density Functional Theory. Springer, Berlin (2003)

    Google Scholar 

  33. Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048–5079 (1981)

    Article  Google Scholar 

  34. Onida, G., Reining, L., Rubio, A.: Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74(2), 601–659 (2002)

    Article  Google Scholar 

  35. Runge, E., Gross, E.K.U.: Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52(12), 997 (1984)

    Article  Google Scholar 

  36. Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys., Condens. Matter 14(11), 2745–2779 (2002)

    Article  Google Scholar 

  37. Amato, M., Palummo, M., Ossicini, S.: SiGe nanowires: Structural stability, quantum confinement, and electronic properties. Phys. Rev. B 80(23), 235333 (2009)

    Article  Google Scholar 

  38. Amato, M., Palummo, M., Ossicini, S.: Reduced quantum confinement effect and electron-hole separation in SiGe nanowires. Phys. Rev. B 79(20), 201302(R) (2009)

    Article  Google Scholar 

  39. Palummo, M., Amato, M., Ossicini, S.: Ab initio optoelectronic properties of SiGe nanowires: Role of many-body effects. Phys. Rev. B 82(7), 073305 (2010)

    Article  Google Scholar 

  40. Amato, M., Palummo, M., Ossicini, S.: Segregation, quantum confinement effect and band offset for [110] SiGe NWs. Phys. Status Solidi B 247(8), 2096 (2010)

    Article  Google Scholar 

  41. Wu, Y., Cui, Y., Huynh, L., Barrelet, C.J., Bell, D.C., Lieber, C.M.: Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4(3), 433–436 (2004)

    Article  Google Scholar 

  42. Tutuc, E., Chu, J., Ott, J., Guha, S.: Doping of germanium nanowires grown in presence of PH3. Appl. Phys. Lett. 89(26), 263101 (2006)

    Article  Google Scholar 

  43. Peelaers, H., Partoens, B., Peeters, F.M.: Properties of B and P doped Ge nanowires. Appl. Phys. Lett. 90(26), 263103 (2007)

    Article  Google Scholar 

  44. Nduwimana, A., Wang, X.Q.: Charge carrier separation in modulation doped coaxial semiconductor nanowires. Nano Lett. 9(1), 283–286 (2009)

    Article  Google Scholar 

  45. Park, J.S., Ryu, B., Chang, K.J.: Stability of donor-pair defects in Si1−x Ge x alloy nanowires. J. Phys. Chem. C 115(21), 10345–10350 (2011)

    Article  Google Scholar 

  46. Zhang, S.B., Northrup, J.E.: Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion. Phys. Rev. Lett. 67, 2339–2342 (1991)

    Article  Google Scholar 

  47. Derycke, V., Soukiassian, P.G., Amy, F., Chabal, Y.J., D’angelo, M.D., Enriquez, H.B., Silly, M.G.: Nanochemistry at the atomic scale revealed in hydrogen-induced semiconductor surface metallization. Nat. Mater. 2(4), 253–258 (2003)

    Article  Google Scholar 

  48. Rurali, R., Cartoixà, X.: Theory of defects in one-dimensional systems: Application to Al-catalyzed Si nanowires. Nano Lett. 9(3), 975–979 (2009)

    Article  Google Scholar 

  49. Peressi, M., Binggeli, N., Baldereschi, A.: Band engineering at interfaces: theory and numerical experiments. J. Phys. D, Appl. Phys. 31(11), 1273 (1998)

    Article  Google Scholar 

  50. Zunger, A.: Theoretical predictions of electronic materials and their properties. Curr. Opin. Solid State Mater. Sci. 3(1), 32–37 (1998)

    Article  Google Scholar 

  51. Ciraci, S., Batra, I.P.: Strained Si/Ge superlattices: Structural stability, growth, and electronic properties. Phys. Rev. B 38(3), 1835–1848 (1988)

    Article  Google Scholar 

  52. Van de Walle, C., Martin, R.: Theoretical study of band offsets at semiconductor interfaces. Phys. Rev. B 35(15), 8154–8165 (1987)

    Article  Google Scholar 

  53. Van de Walle, C.G., Martin, R.M.: Theoretical study of Si/Ge interfaces. J. Vac. Sci. Technol. A 3(4), 1256–1259 (1985)

    Article  Google Scholar 

  54. Peköz, R., Raty, J.Y.: From bare Ge nanowire to Ge/Si core/shell nanowires: A first-principles study. Phys. Rev. B 80(15), 155432 (2009)

    Article  Google Scholar 

  55. Musin, R.N., Wang, X.Q.: Structural and electronic properties of epitaxial core-shell nanowire heterostructures. Phys. Rev. B 71(15), 155318 (2005)

    Article  Google Scholar 

  56. Migas, D.B., Borisenko, V.E.: Structural, electronic, and optical properties of 〈001〉-oriented SiGe nanowires. Phys. Rev. B 76(3), 035440 (2007)

    Article  Google Scholar 

  57. Musin, R.N., Wang, X.Q.: Quantum size effect in core-shell structured silicon-germanium nanowires. Phys. Rev. B 74(16), 165308 (2006)

    Article  Google Scholar 

  58. Peng, X., Logan, P.: Electronic properties of strained Si/Ge core-shell nanowires. Appl. Phys. Lett. 96, 143119 (2010)

    Article  Google Scholar 

  59. Yang, L., Musin, R.N., Wang, X.Q., Chou, M.Y.: Quantum confinement effect in Si/Ge core-shell nanowires: First-principles calculations. Phys. Rev. B 77(19), 195325 (2008)

    Article  Google Scholar 

  60. Nduwimana, A., Musin, R.N., Smith, A.M., Wang, X.Q.: Spatial carrier confinement in core-shell and multishell nanowire heterostructures. Nano Lett. 8(10), 3341–3344 (2008)

    Article  Google Scholar 

  61. Liu, N., Li, Y.R., Lu, N., Yao, Y.X., Fang, X.W., Wang, C.Z., Ho, K.M.: Charge localization in [112] Si/Ge and Ge/Si core-shell nanowires. J. Phys. D, Appl. Phys. 43(27), 275404 (2010)

    Article  Google Scholar 

  62. Peköz, R., Malcığlu, O.B., Raty, J.Y.: First-principles design of efficient solar cells using two-dimensional arrays of core-shell and layered SiGe nanowires. Phys. Rev. B 83(3), 035317 (2011)

    Article  Google Scholar 

  63. Peng, X., Tang, F., Logan, P.: Band structure of Si/Ge core-shell nanowires along the [110] direction modulated by external uniaxial strain. J. Phys., Condens. Matter 23(11), 115502 (2011)

    Article  Google Scholar 

  64. Kagimura, R., Nunes, R.W., Chacham, H.: Surface dangling-bond states and band lineups in hydrogen-terminated Si, Ge, and Ge/Si nanowires. Phys. Rev. Lett. 98(2), 026801 (2007)

    Article  Google Scholar 

  65. Peelaers, H., Partoens, B., Peeters, F.M.: Electronic and dynamical properties of Si/Ge core-shell nanowires. Phys. Rev. B 82(11), 113411 (2010)

    Article  Google Scholar 

  66. Huang, S., Yang, L.: Strain engineering of band offsets in Si/Ge core-shell nanowires. Appl. Phys. Lett. 98(9), 093114 (2011)

    Article  MathSciNet  Google Scholar 

  67. Yan, B., Frauenheim, T., Gali, A.: Gate-controlled donor activation in silicon nanowires. Nano Lett. 10(9), 3791–3795 (2010)

    Article  Google Scholar 

  68. Zhang, S., Lopez, F.J., Hyun, J.K., Lauhon, L.J.: Direct detection of Hole Gas in Ge-Si Core-Shell nanowires by enhanced Raman scattering. Nano Lett. 10(11), 4483–4487 (2010)

    Article  Google Scholar 

  69. Li, L., Smith, D.J., Dailey, E., Madras, P., Drucker, J., McCartney, M.R.: Observation of hole accumulation in Ge/Si Core/Shell nanowires using off-axis electron holography. Nano Lett. 11(2), 493–497 (2011)

    Article  Google Scholar 

  70. Peng, K.Q., Lee, S.T.: Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater. 23(2), 198–215 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

M. Amato and S. Ossicini greatly acknowledge the Transnational Access Programme of the HPC-EUROPA2 Project and the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement 245977, Ministero Affari Esteri, Direzione Generale per la Promozione and Cooperazione Culturale. Funding under Contract Nos. TEC2009-06986, FIS2009-12721-C04-03, and CSD2007-00041 are greatly acknowledged. The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the Res Española de Supercomputaciòn and the CINECA award under the ISCRA initiative (No. HP10BQNB3U), for the availability of high performance computing resources and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Rurali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amato, M., Rurali, R. & Ossicini, S. Doping of SiGe core-shell nanowires. J Comput Electron 11, 272–279 (2012). https://doi.org/10.1007/s10825-012-0394-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-012-0394-y

Keywords

Navigation