Skip to main content
Log in

First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We overview the nonequilibrium Green function combined with density functional theory (NEGF-DFT) approach to modeling of independent electronic and phononic quantum transport in nanoscale thermoelectrics with examples focused on a new class of devices where a single organic molecule is attached to two metallic zigzag graphene nanoribbons (ZGNRs) via highly transparent contacts. Such contacts make possible injection of evanescent wavefunctions from the ZGNR electrodes, so that their overlap within the molecular region generates a peak in the electronic transmission around the Fermi energy of the device. Additionally, the spatial symmetry properties of the transverse propagating states in the semi-infinite ZGNR electrodes suppress hole-like contributions to the thermopower. Thus optimized thermopower, together with diminished phonon thermal conductance in a ZGNR|molecule|ZGNR inhomogeneous heterojunctions, yields the thermoelectric figure of merit ZT≃0.4 at room temperature with maximum ZT≃3 reached at very low temperatures T≃10 K (so that the latter feature could be exploited for thermoelectric cooling of, e.g., infrared sensors). The reliance on evanescent mode transport and symmetry of propagating states in the electrodes makes the electronic-transport-determined power factor in this class of devices largely insensitive to the type of sufficiently short organic molecule, which we demonstrate by showing that both 18-annulene and C10 molecule sandwiched by the two ZGNR electrodes yield similar thermopower. Thus, one can search for molecules that will further reduce the phonon thermal conductance (in the denominator of ZT) while keeping the electronic power factor (in the nominator of ZT) optimized. We also show how the often employed Brenner empirical interatomic potential for hydrocarbon systems fails to describe phonon transport in our single-molecule nanojunctions when contrasted with first-principles results obtained via NEGF-DFT methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We should mention here that the Lorenz ratio κ el/GT calculated for transport of noninteracting electrons through several single-molecule nanojunctions shows variations by tens of percent from the Wiedemann-Franz law as the chemical potential crosses a transmission resonance, and much larger deviation around the transmission nodes [18, 19].

  2. For comparison between Boltzmann semiclassical and Landauer quantum transport approaches applied to thermoelectric transport coefficients of conventional translationally invariant systems see Ref. [55].

  3. For example, in the case of either bulk graphene [64] or GNRs [65] one has to employ TB Hamiltonian with up to third-nearest-neighbor hopping in order to match the DFT-computed band structure.

  4. For an example of the peak in T el(E) induced by the overlap of evanescent wavefunctions originating from two CNT electrodes sandwiching 18-annulene molecule see Supplemental Material of Ref. [93].

References

  1. Vining, C.B.: An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83 (2009)

    Article  Google Scholar 

  2. Tritt, T.M.: Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 41, 433 (2011)

    Article  Google Scholar 

  3. Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008)

    Article  Google Scholar 

  4. Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., Chen, G.: Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2, 466 (2009)

    Article  Google Scholar 

  5. Mahan, G.D., Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. USA 93, 7436 (1996)

    Article  Google Scholar 

  6. Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 54 (2008)

    Article  Google Scholar 

  7. Kim, R., Datta, S., Lundstrom, M.S.: Influence of dimensionality on thermoelectric device performance. J. Appl. Phys. 105, 034506 (2009)

    Article  Google Scholar 

  8. Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008)

    Article  Google Scholar 

  9. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard, W.A. III, Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008)

    Article  Google Scholar 

  10. Reddy, P., Jang, S.-Y., Segalman, R.A., Majumdar, A.: Thermoelectricity in molecular junctions. Science 315, 1568 (2007)

    Article  Google Scholar 

  11. Baheti, K., Malen, J.A., Doak, P., Reddy, P., Jang, S.-Y., Tilley, T.D., Majumdar, A., Segalman, R.A.: Probing the chemistry of molecular heterojunctions using thermoelectricity. Nano Lett. 8, 715 (2008)

    Article  Google Scholar 

  12. Malen, J.A., Doak, P., Baheti, K., Tilley, T.D., Segalman, R.A., Majumdar, A.: Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions. Nano Lett. 9, 1164 (2009)

    Article  Google Scholar 

  13. Malen, J.A., Yee, S.K., Majumdar, A., Segalman, R.A.: Fundamentals of energy transport, energy conversion, and thermal properties in organic-inorganic heterojunctions. Chem. Phys. Lett. 491, 109 (2010)

    Article  Google Scholar 

  14. Tan, A., Sadat, S., Reddy, P.: Measurement of thermopower and current-voltage characteristics of molecular junctions to quantify orbital alignment. Appl. Phys. Lett. 96, 013110 (2010)

    Article  Google Scholar 

  15. Hoffmann, E.A., Nilsson, H.A., Matthews, J.E., Nakpathomkun, N., Persson, A.I., Samuelson, L., Linke, H.: Measuring temperature gradients over nanometer length scales. Nano Lett. 9, 779 (2009)

    Article  Google Scholar 

  16. Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4, 235 (2009)

    Article  Google Scholar 

  17. Dubi, Y., Di Ventra, M.: Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131 (2011)

    Article  Google Scholar 

  18. Bergfield, J.P., Stafford, C.A.: Thermoelectric signatures of coherent transport in single-molecule heterojunctions. Nano Lett. 9, 3072 (2009)

    Article  Google Scholar 

  19. Bergfield, J.P., Solis, M.A., Stafford, C.A.: Giant thermoelectric effect from transmission supernodes. ACS Nano 4, 5314 (2010)

    Article  Google Scholar 

  20. Kubala, B., König, J., Pekola, J.: Violation of the Wiedemann-Franz law in a single-electron transistor. Phys. Rev. Lett. 100, 066801 (2008)

    Article  Google Scholar 

  21. Held, K., Arita, R., Anisimov, V., Kuroki, K.: The LDA+DMFT route to identify good thermoelectrics. In: Zlatic, V., Hewson, A.C. (eds.) Properties and Applications of Thermoelectric Materials. The NATO Science for Peace and Security Programme, pp. 141–157. Springer, Berlin (2009)

    Chapter  Google Scholar 

  22. Held, K.: Electronic structure calculations using dynamical mean field theory. Adv. Phys. 56, 829 (2007)

    Article  Google Scholar 

  23. Wissgott, P., Toschi, A., Usui, H., Kuroki, K., Held, K.: Enhancement of the Na x CoO2 thermopower due to electronic correlations. Phys. Rev. B 82, 201106 (2010)

    Article  Google Scholar 

  24. Boese, D., Fazio, R.: Thermoelectric effects in Kondo-correlated quantum dots. Europhys. Lett. 56, 576 (2001)

    Article  Google Scholar 

  25. Zhang, Y., Dresselhaus, M.S., Shi, Y., Ren, Z., Chen, G.: High thermoelectric figure-of-merit in Kondo insulator nanowires at low temperatures. Nano Lett. 11, 1166 (2011)

    Article  Google Scholar 

  26. Pauly, F., Viljas, J.K., Cuevas, J.C.: Length-dependent conductance and thermopower in single-molecule junctions of dithiolated oligophenylene derivatives: A density functional study. Phys. Rev. B 78, 035315 (2008)

    Article  Google Scholar 

  27. Ke, S.-H., Yang, W., Curtarolo, S., Baranger, H.U.: Thermopower of molecular junctions: An ab initio study. Nano Lett. 9, 1011 (2009)

    Article  Google Scholar 

  28. Finch, C.M., García-Suárez, V.M., Lambert, C.J.: Giant thermopower and figure of merit in single-molecule devices. Phys. Rev. B 79, 033405 (2009)

    Article  Google Scholar 

  29. Liu, Y.-S., Chen, Y.-C.: Seebeck coefficient of thermoelectric molecular junctions: First-principles calculations. Phys. Rev. B 79, 193101 (2009)

    Article  Google Scholar 

  30. Liu, Y.-S., Chen, Y.-R., Chen, Y.-C.: Thermoelectric efficiency in nanojunctions: A comparison between atomic junctions and molecular junctions. ACS Nano 3, 3497 (2009)

    Article  Google Scholar 

  31. Liu, Y.-S., Yao, H.-T., Chen, Y.-C.: Atomic-scale field-effect transistor as a thermoelectric power generator and self-powered device. J. Phys. Chem. C 115, 14988 (2011)

    Article  Google Scholar 

  32. Quek, S.Y., Choi, H.J., Louie, S.G., Neaton, J.B.: Thermopower of amine–gold-linked aromatic molecular junctions from first principles. ACS Nano 5, 551 (2011)

    Article  Google Scholar 

  33. Nozaki, D., Sevinçli, H., Li, W., Gutiérrez, R., Cuniberti, G.: Engineering the figure of merit and thermopower in single-molecule devices connected to semiconducting electrodes. Phys. Rev. B 81, 235406 (2010)

    Article  Google Scholar 

  34. Saha, K.K., Markussen, T., Thygesen, K.S., Nikolić, B.K.: Multiterminal single-molecule–graphene-nanoribbon junctions with the thermoelectric figure of merit optimized via evanescent mode transport and gate voltage. Phys. Rev. B 84, 041412(R) (2011)

    Google Scholar 

  35. Sergueev, N., Shin, S., Kaviany, M., Dunietz, B.: Efficiency of thermoelectric energy conversion in biphenyl-dithiol junctions: Effect of electron-phonon interactions. Phys. Rev. B 83, 195415 (2011)

    Article  Google Scholar 

  36. Bergfield, J.P., Solomon, G.C., Stafford, C.A., Ratner, M.A.: Novel quantum interference effects in transport through molecular radicals. Nano Lett. 11, 2759 (2011)

    Article  Google Scholar 

  37. Murphy, P., Mukerjee, S., Moore, J.: Optimal thermoelectric figure of merit of a molecular junction. Phys. Rev. B 78, 161406 (2008)

    Article  Google Scholar 

  38. Leijnse, M., Wegewijs, M.R., Flensberg, K.: Nonlinear thermoelectric properties of molecular junctions with vibrational coupling. Phys. Rev. B 82, 045412 (2010)

    Article  Google Scholar 

  39. Entin-Wohlman, O., Imry, Y., Aharony, A.: Three-terminal thermoelectric transport through a molecular junction. Phys. Rev. B 82, 115314 (2010)

    Article  Google Scholar 

  40. Stadler, R., Markussen, T.: Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications. J. Chem. Phys. 135, 154109 (2011)

    Article  Google Scholar 

  41. Markussen, T., Jauho, A.-P., Brandbyge, M.: Surface-decorated silicon nanowires: A route to high-ZT thermoelectrics. Phys. Rev. Lett. 103, 055502 (2009)

    Article  Google Scholar 

  42. Tsutsui, M., Taniguchi, M., Yokota, K., Kawai, T.: Roles of lattice cooling on local heating in metal-molecule-metal junctions. Appl. Phys. Lett. 96, 103110 (2010)

    Article  Google Scholar 

  43. Song, H., Reed, M.A., Lee, T.: Single molecule electronic devices. Adv. Mater. 23, 1583 (2011)

    Article  Google Scholar 

  44. Paulsson, M., Datta, S.: Thermoelectric effect in molecular electronics. Phys. Rev. B 67, 241403 (2003)

    Article  Google Scholar 

  45. Cardamone, D., Stafford, C., Mazumdar, S.: Controlling quantum transport through a single molecule. Nano Lett. 6, 2422 (2006)

    Article  Google Scholar 

  46. Ke, S.-H., Yang, W., Baranger, H.U.: Quantum-interference-controlled molecular electronics. Nano Lett. 8, 3257 (2008)

    Article  Google Scholar 

  47. Saha, K.K., Nikolić, B.K., Meunier, V., Lu, W., Bernholc, J.: Quantum-interference-controlled three-terminal molecular transistors based on a single ring-shaped molecule connected to graphene nanoribbon electrodes. Phys. Rev. Lett. 105, 236803 (2010)

    Article  Google Scholar 

  48. Markussen, T., Stadler, R., Thygesen, K.S.: The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260 (2010)

    Article  Google Scholar 

  49. Markussen, T., Stadler, R., Thygesen, K.S.: Graphical prediction of quantum interference-induced transmission nodes in functionalized organic molecules. Phys. Chem. Chem. Phys. 13, 14311 (2011)

    Article  Google Scholar 

  50. Galperin, M., Nitzan, A., Ratner, M.A.: Inelastic effects in molecular junction transport: scattering and self-consistent calculations for the Seebeck coefficient. Mol. Phys. 106, 397 (2008)

    Article  Google Scholar 

  51. Frederiksen, T., Paulsson, M., Brandbyge, M., Jauho, A.-P.: Inelastic transport theory from first principles: Methodology and application to nanoscale devices. Phys. Rev. B 75, 205413 (2007)

    Article  Google Scholar 

  52. Dash, L.K., Ness, H., Godby, R.W.: Nonequilibrium inelastic electronic transport: Polarization effects and vertex corrections to the self-consistent born approximation. Phys. Rev. B 84, 085433 (2011)

    Article  Google Scholar 

  53. Mingo, N.: Anharmonic phonon flow through molecular-sized junctions. Phys. Rev. B 74, 125402 (2006)

    Article  Google Scholar 

  54. Vo, T.T., Williamson, A.J., Lordi, V., Galli, G.: Atomistic design of thermoelectric properties of silicon nanowires. Nano Lett. 8, 1111 (2008)

    Article  Google Scholar 

  55. Jeong, C., Kim, R., Luisier, M., Datta, S., Lundstrom, M.: On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients. J. Appl. Phys. 107, 023707 (2010)

    Article  Google Scholar 

  56. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  57. Mitra, A., Aleiner, I., Millis, A.J.: Phonon effects in molecular transistors: Quantal and classical treatment. Phys. Rev. B 69, 245302 (2004)

    Article  Google Scholar 

  58. Dubi, Y., Di Ventra, M.: Thermoelectric effects in nanoscale junctions. Nano Lett. 9, 97 (2008)

    Article  Google Scholar 

  59. Timm, C.: Tunneling through molecules and quantum dots: Master-equation approaches. Phys. Rev. B 77, 195416 (2008)

    Article  Google Scholar 

  60. Haug, H., Jauho, A.-P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (2007)

    Google Scholar 

  61. Haupt, F., Novotný, T., Belzig, W.: Current noise in molecular junctions: Effects of the electron-phonon interaction. Phys. Rev. B 82, 165441 (2010)

    Article  Google Scholar 

  62. Härtle, R., Benesch, C., Thoss, M.: Vibrational nonequilibrium effects in the conductance of single molecules with multiple electronic states. Phys. Rev. Lett. 102, 146801 (2009)

    Article  Google Scholar 

  63. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  64. Reich, S., Maultzsch, J., Thomsen, C., Ordejón, P.: Tight-binding description of graphene. Phys. Rev. B 66, 035412 (2002)

    Article  Google Scholar 

  65. Cresti, A., Nemec, N., Biel, B., Niebler, G., Triozon, F., Cuniberti, G., Roche, S.: Charge transport in disordered graphene-based low dimensional materials. Nano Res. 1, 361 (2008)

    Article  Google Scholar 

  66. Markussen, T., Jauho, A.-P., Brandbyge, M.: Electron and phonon transport in silicon nanowires: Atomistic approach to thermoelectric properties. Phys. Rev. B 79, 035415 (2009)

    Article  Google Scholar 

  67. Cervantes-Sodi, F., Csányi, G., Piscanec, S., Ferrari, A.C.: Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Phys. Rev. B 77, 165427 (2008)

    Article  Google Scholar 

  68. Areshkin, D.A., Nikolić, B.K.: Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing a large number of atoms. Phys. Rev. B 81, 155450 (2010)

    Article  Google Scholar 

  69. Toher, C., Filippetti, A., Sanvito, S., Burke, K.: Self-interaction errors in density-functional calculations of electronic transport. Phys. Rev. Lett. 95, 146402 (2005)

    Article  Google Scholar 

  70. Cuniberti, G., Fagas, G., Richter, K. (eds.): Introducing Molecular Electronics. Springer, Berlin (2005)

    Google Scholar 

  71. Fiolhais, C., Nogueira, F., Marques, M.A. (eds.): A Primer in Density Functional Theory. Lecture Notes in Physics, vol. 620. Springer, Berlin (2003)

    MATH  Google Scholar 

  72. Taylor, J., Guo, H., Wang, J.: Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 63, 245407 (2001)

    Article  Google Scholar 

  73. Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)

    Article  Google Scholar 

  74. Stokbro, K.: First-principles modeling of electron transport. J. Phys., Condens. Matter 20, 064216 (2008)

    Article  Google Scholar 

  75. Rungger, I., Sanvito, S.: Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition. Phys. Rev. B 78, 035407 (2008)

    Article  Google Scholar 

  76. Saha, K.K., Lu, W., Bernholc, J., Meunier, V.: First-principles methodology for quantum transport in multiterminal junctions. J. Chem. Phys. 131, 164105 (2009)

    Article  Google Scholar 

  77. Esfarjani, K., Zebarjadi, M., Kawazoe, Y.: Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation. Phys. Rev. B 73, 085406 (2006)

    Article  Google Scholar 

  78. Strange, M., Rostgaard, C., Häkkinen, H., Thygesen, K.S.: Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions. Phys. Rev. B 83, 115108 (2011)

    Article  Google Scholar 

  79. Wang, J.-S., Wang, J., Lü, J.T.: Quantum thermal transport in nanostructures. Eur. Phys. J. B 62, 381 (2008)

    Article  Google Scholar 

  80. McGaughey, A.J.H., Kaviany, M.: Phonon transport in molecular dynamics simulations: Formulation and thermal conductivity prediction. In: Advances in Heat Transfer, vol. 39, p. 169. Academic Press, San Diego (2006)

    Google Scholar 

  81. McGaughey, A.J.H., Kaviany, M.: Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation. Phys. Rev. B 69, 094303 (2004)

    Article  Google Scholar 

  82. Wang, R.Y., Segalman, R.A., Majumdar, A.: Room temperature thermal conductance of alkanedithiol self-assembled monolayers. Appl. Phys. Lett. 89, 173113 (2006)

    Article  Google Scholar 

  83. Rego, L.G.C., Kirczenow, G.: Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 81, 232 (1998)

    Article  Google Scholar 

  84. https://wiki.fysik.dtu.dk/gpaw/

  85. Enkovaara, J., Rostgaard, C., Mortensen, J.J., Chen, J., Dulak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H.A., Kristoffersen, H.H., Kuisma, M., Larsen, A.H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P.G., Ojanen, J., Olsen, T., Petzold, V., Romero, N.A., Stausholm-Moller, J., Strange, M., Tritsaris, G.A., Vanin, M., Walter, M., Hammer, B., Hakkinen, H., Madsen, G.K.H., Nieminen, R.M., Norskov, J.K., Puska, M., Rantala, T.T., Schiotz, J., Thygesen, K.S., Jacobsen, K.W.: Electronic structure calculations with gpaw: A real-space implementation of the projector augmented-wave method. J. Phys., Condens. Matter 22, 253202 (2010)

    Article  Google Scholar 

  86. Tan, Z.W., Wang, J.-S., Gan, C.K.: First-principles study of heat transport properties of graphene nanoribbons. Nano Lett. 11, 214 (2010)

    Article  Google Scholar 

  87. http://www.icmab.es/siesta/

  88. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011)

    Article  Google Scholar 

  89. Aksamija, Z., Knezevic, I.: Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering. Appl. Phys. Lett. 98, 141919 (2011)

    Article  Google Scholar 

  90. Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., Mullen, K., Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470 (2010)

    Article  Google Scholar 

  91. Jia, X., Hofmann, M., Meunier, V., Sumpter, B.G., Campos-Delgado, J., Manuel, J., Hyungbin, R.-H., Ya-Ping, S., Reina, H.A., Kong, J., Terrones, M., Dresselhaus, M.S.: Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 1701 (2009)

    Article  Google Scholar 

  92. Tao, C., Jiao, L., Yazyev, O.V., Chen, Y.-C., Feng, J., Zhang, X., Capaz, R.B., Zettl, J.M.T.A., Louie, S.G., Dai, H., Crommie, M.F.: Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7, 616 (2011)

    Article  Google Scholar 

  93. Ke, S.-H., Baranger, H.U., Yang, W.: Contact transparency of nanotube-molecule-nanotube junctions. Phys. Rev. Lett. 99, 146802 (2007)

    Article  Google Scholar 

  94. Yazyev, O.V., Katsnelson, M.I.: Magnetic correlations at graphene edges: Basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2008)

    Article  Google Scholar 

  95. Kunstmann, J., Özdoğan, C., Quandt, A., Fehske, H.: Stability of edge states and edge magnetism in graphene nanoribbons. Phys. Rev. B 83, 045414 (2011)

    Article  Google Scholar 

  96. Prins, F., Barreiro, A., Ruitenberg, J.W., Seldenthuis, J.S., Aliaga-Alcalde, N., Vandersypen, L.M.K., van der Zant, H.S.J.: Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 11, 4607 (2011)

    Article  Google Scholar 

  97. Guo, X., Small, J.P., Klare, J.E., Wang, Y., Purewal, M.S., Tam, I.W., Hong, B.H., Caldwell, R., Huang, L., O’Brien, S., Yan, J., Breslow, R., Wind, S.J., Hone, J., Kim, P., Nuckolls, C.: Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356 (2006)

    Article  Google Scholar 

  98. Zuev, Y.M., Chang, W., Kim, P.: Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009)

    Article  Google Scholar 

  99. Velev, J., Butler, W.: On the equivalence of different techniques for evaluating the green function for a semi-infinite system using a localized basis. J. Phys., Condens. Matter 16, R637 (2004)

    Article  Google Scholar 

  100. Lopez-Sancho, M.P., Lopez-Sancho, J.M., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F 14, 1205 (1984)

    Article  Google Scholar 

  101. http://projects.ivec.org/gulp/

  102. Zimmermann, J., Pavone, P., Cuniberti, G.: Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: Minimal force-constant model. Phys. Rev. B 78, 045410 (2008)

    Article  Google Scholar 

  103. Sevinçli, H., Cuniberti, G.: Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010)

    Article  Google Scholar 

  104. Mingo, N., Stewart, D.A. Broido, D.A., Srivastava, D.: Phonon transmission through defects in carbon nanotubes from first principles. Phys. Rev. B 77, 033418 (2008)

    Article  Google Scholar 

  105. Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990)

    Article  Google Scholar 

  106. Lindsay, L., Broido, D.A.: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010)

    Article  Google Scholar 

  107. Gale, J.D.: Gulp—a computer program for the symmetry adapted simulation of solids. J. Chem. Soc. Faraday Trans. 93, 629 (1997)

    Article  Google Scholar 

  108. Galperin, M., Ratner, M.A., Nitzan, A.: Molecular transport junctions: vibrational effects. J. Phys., Condens. Matter 19, 103201 (2007)

    Article  Google Scholar 

  109. Horsfield, A.P., Bowler, D.R., Ness, H., Sánchez, C.G., Todorov, T.N., Fisher, A.J.: The transfer of energy between electrons and ions in solids. Rep. Prog. Phys. 69, 1195 (2006)

    Article  Google Scholar 

  110. Lü, J.T., Wang, J.-S.: Coupled electron and phonon transport in one-dimensional atomic junctions. Phys. Rev. B 76, 165418 (2007)

    Article  Google Scholar 

  111. Hsu, B.C., Liu, Y.-S., Lin, S.H., Chen, Y.-C.: Seebeck coefficients in nanoscale junctions: Effects of electron-vibration scattering and local heating. Phys. Rev. B 83, 041404 (2011)

    Article  Google Scholar 

  112. Asai, Y.: Nonequilibrium phonon effects on transport properties through atomic and molecular bridge junctions. Phys. Rev. B 78, 045434 (2008)

    Article  MathSciNet  Google Scholar 

  113. Jiang, J.-W., Wang, J.-S.: Joule heating and thermoelectric properties in short single-walled carbon nanotubes: electron-phonon interaction effect. J. Appl. Phys. 110, 124319 (2011)

    Article  Google Scholar 

  114. Choi, W.S., Ohta, H., Moon, S.J., Lee, Y.S., Noh, T.W.: Dimensional crossover of polaron dynamics in Nb:SrTiO3/SrTiO3 superlattices: Possible mechanism of thermopower enhancement. Phys. Rev. B 82, 024301 (2010)

    Article  Google Scholar 

  115. Scarola, V.W., Mahan, G.D.: Phonon drag effect in single-walled carbon nanotubes. Phys. Rev. B 66, 205405 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Esfarjani, V. Meunier and M. Paulsson for illuminating discussions. Financial support under DOE Grant No. DE-FG02-07ER46374 (K.K.S. and B.K.N.) and FTP Grants No. 274-08-0408 and No. 11-104592 (T.M. and K.S.T.) is gratefully acknowledged. The supercomputing time was provided in part by the NSF through TeraGrid resource TACC Ranger under Grant No. TG-DMR100002 and NSF Grant No. CNS-0958512.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branislav K. Nikolić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolić, B.K., Saha, K.K., Markussen, T. et al. First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes. J Comput Electron 11, 78–92 (2012). https://doi.org/10.1007/s10825-012-0386-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-012-0386-y

Keywords

Navigation