On the numerical aspects of deterministic multisubband device simulations for strained double gate PMOSFETs

  • Anh-Tuan Pham
  • Christoph Jungemann
  • Bernd Meinerzhagen


In this paper numerical aspects of deterministic multisubband device simulations are presented for strained double gate PMOSFETs including magnetotransport. The simulations are based on a self-consistent solution of the multisubband Boltzmann transport equation (BTE), 6×6 kp Schrödinger equation (SE) and Poisson equation (PE). For accurate and efficient calculation of the subband structure, an efficient discretization of the 2D k-space combined with a monotonic cubic spline interpolation is employed. The multisubband BTE is solved with a deterministic method based on a Fourier expansion of the distribution function. The Fourier series is found to converge rapidly for nanoscale double gate PMOSFETs. A convergence enhancement method for the Gummel type SE-PE-BTE loop by solving the BTE-PE simultaneously is proposed.


Multisubband semiclassical transport Device simulations kp method Double-gate PMOSFETs 


  1. 1.
    Engl, W.L., et al.: Device modeling. Proc. IEEE 71, 10 (1983) CrossRefGoogle Scholar
  2. 2.
    Thompson, S., et al.: A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 um2 SRAM cell. In: IEDM Tech. Dig. p. 61 (2002) Google Scholar
  3. 3.
    Mistry, K., et al.: A 45 nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. In: IEDM Tech. Dig., pp. 247–250 (2007) Google Scholar
  4. 4.
    Krishnamohan, T., et al.: Comparison of (001), (110) and (111) Uniaxial- and biaxial-strained-Ge and strained-Si PMOS DGFETs for all channel orientations: mobility enhancement, drive current, delay and off-state leakage. In: IEDM Tech. Dig. (2008) Google Scholar
  5. 5.
    Grasser, T., et al.: A non-parabolic macroscopic transport models for device simulation based on bulk Monte Carlo data. J. Appl. Phys. 97, 093710 (2005) CrossRefGoogle Scholar
  6. 6.
    Jungemann, C., et al.: Failure of moments-based transport models in nanoscale devices near equilibrium. IEEE Trans. Electron Devices 52(11), 2404 (2005) CrossRefGoogle Scholar
  7. 7.
    Lundstrom, M., Ren, Z.: Essential physics of carrier transport in nanoscale MOSFETs. IEEE Trans. Electron Devices 49(1), 133 (2002) CrossRefGoogle Scholar
  8. 8.
    Pham, A.T., et al.: Deterministic multisubband device simulations for strained double gate PMOSFETs including magnetotransport. In: IEDM Tech. Dig. (2008) Google Scholar
  9. 9.
    Pham, A.T., et al.: Efficient simulation of hole transport in strained Si and SiGe on insulator inversion layers. Solid-State Electron. 52, 1660 (2008) CrossRefGoogle Scholar
  10. 10.
    Jungemann, C., et al.: Stable discretization of the Boltzmann equation based on spherical harmonics, box integration, and a maximum entropy dissipation principle. J. Appl. Phys. 100, 024502-1 (2006) CrossRefGoogle Scholar
  11. 11.
    Ringhofer, C.: A mixed spectral—difference method for the steady state Boltzmann–Poisson system. SIAM J. Numer. Anal. 41, 64 (2003) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gnudi, A., et al.: Two-dimensional MOSFET simulation by means of a multidimensional spherical harmonics expansion of the Boltzmann transport equation. Solid-State Electron. 36, 575 (1993) CrossRefGoogle Scholar
  13. 13.
    Goldsman, N., et al.: Advances in the spherical Harmonic-Boltzmann-Wigner approach to device simulation. Superlattices Microstruct. 27, 159 (2000) CrossRefGoogle Scholar
  14. 14.
    Pham, A.T., et al.: Microscopic modeling of hole inversion layer mobility in unstrained and uniaxially stressed Si on arbitrarily oriented substrates. Solid-State Electron. 52, 1437 (2008) CrossRefGoogle Scholar
  15. 15.
    Meinerzhagen, B., et al.: Quasi-simultaneous solution method: a new highly efficient strategy for numerical MOST simulations. IEEE Trans. Comput.-Aided Des. 4, 575 (1985) CrossRefGoogle Scholar
  16. 16.
    Jungemann, C., Meinerzhagen, B.: Analysis of the stochastic error of stationary Monte Carlo device simulations. IEEE Trans. Electron Devices 48(5), 985 (2001) CrossRefGoogle Scholar
  17. 17.
    Widiger, D.J., et al.: Two-dimensional transient simulation of an idealized high electron mobility transistor. IEEE Trans. Electron Devices 32(6), 1092 (1985) CrossRefGoogle Scholar
  18. 18.
    Pham, A.T., et al.: Physics-based modeling of hole inversion layer mobility in strained SiGe on insulator. IEEE Trans. Electron Devices 54(9), 2174 (2007) CrossRefGoogle Scholar
  19. 19.
    Pham, A.T., et al.: Simulation of mobility variation and drift velocity enhancement due to uniaxial stress combined with biaxial strain in Si PMOS. In: Proc. IWCE, pp. 45–48 (2009) Google Scholar
  20. 20.
    Oberhuber, R., et al.: Subband structure and mobility of two-dimensional holes in strained Si/SiGe MOSFETs. Phys. Rev. B 58, 9941 (1998) CrossRefGoogle Scholar
  21. 21.
    Wang, E.X., et al.: Physics of hole transport in strained silicon MOSFET inversion layers. IEEE Trans. Electron Devices 53(8), 1840 (2006) CrossRefGoogle Scholar
  22. 22.
    Fischetti, M.V., et al.: Six-band kp calculation of the hole mobility in silicon inversion layers: dependence on surface orientation, strain, and silicon thickness. J. Appl. Phys. 94, 1079 (2003) CrossRefGoogle Scholar
  23. 23.
    Pham, A.T., et al.: A fast k*p solver for hole inversion layers with an efficient 2D k-space discretization. J. Comput. Electron. 7(3), 99 (2008) CrossRefGoogle Scholar
  24. 24.
    Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238 (1980) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Levenberg, K.: A method for the solution of certain problems in least squares. Q. Appl. Math. 2, 164 (1944) MATHMathSciNetGoogle Scholar
  26. 26.
    Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431 (1963) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Michielis, M.D., et al.: A new analytical model for the energy dispersion in two-dimensional hole inversion layers. Solid-State Electron. 51, 598 (2007) CrossRefGoogle Scholar
  28. 28.
    Michielis, M.D., et al.: A new multi subband Monte Carlo simulator for nano p-MOSFETs. In: Proc. ULIS, pp. 67–70 (2008) Google Scholar
  29. 29.
    Jin, S., et al.: Simulation of silicon nanowire transistors using Boltzmann transport equation under relaxation time approximation. IEEE Trans. Electron Devices 55(3), 727 (2008) CrossRefGoogle Scholar
  30. 30.
    Jungemann, C., et al.: Simulation of linear and nonlinear electron transport in homogeneous silicon inversion layers. Solid-State Electron. 36, 1529 (1993) CrossRefGoogle Scholar
  31. 31.
    Varga, R.S.: Matrix Iterative Analysis. Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1962) Google Scholar
  32. 32.
    Ren, Z., et al.: NanoMOS 2.5: A two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans. Electron Devices 50(9), 1914 (2003) CrossRefGoogle Scholar
  33. 33.
    Pham, A.T., et al.: A convergence enhancement method for deterministic multisubband device simulations of double gate PMOSFET. In: Proc. SISPAD, pp. 115–118 (2009) Google Scholar
  34. 34.
    Meziani, Y.M., et al.: Magnetoresistance mobility measurements in sub 0.1 μm Si MOSFETs. In: Proc. ESSDERC, pp. 157–160 (2004) Google Scholar
  35. 35.
    Chaisantikulwat, W., et al.: Differential magnetoresistance technique for mobility extraction in ultra-short channel FDSOI transistors. Solid-State Electron. 50(4), 637 (2006) CrossRefGoogle Scholar
  36. 36.
    Huet, K., et al.: Monte Carlo study of apparent magnetoresistance mobility in nanometer scale metal oxide semiconductor field effect transistors. J. Appl. Phys. 104, 044504 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2009

Authors and Affiliations

  • Anh-Tuan Pham
    • 1
  • Christoph Jungemann
    • 2
  • Bernd Meinerzhagen
    • 1
  1. 1.BSTTU BraunschweigBraunschweigGermany
  2. 2.EIT4Bundeswehr UniversityNeubibergGermany

Personalised recommendations