Skip to main content
Log in

Ballistic quantum transport using the contact block reduction (CBR) method

An introduction

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The contact block reduction (CBR) method is a variant of the nonequilibrium Green’s function formalism and can be used to describe quantum transport in the ballistic limit very efficiently. We present a numerical implementation of a charge self-consistent version of the CBR algorithm. We show in detail how to calculate the electronic properties of open quantum systems such as the transmission function, the local density of states and the carrier density. Several 1D and 2D examples are provided to illustrate the key points. The CBR method is a very powerful tool to tackle the challenge of calculating transport in the ballistic limit for 3D devices of arbitrary shape and with an arbitrary number of contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  2. Kubis, T., Yeh, C., Vogl, P., Benz, A., Fasching, G., Deutsch, C.: Theory of non-equilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers. Phys. Rev. B 79, 195323 (2009)

    Article  Google Scholar 

  3. Mamaluy, D., Sabathil, M., Vogl, P.: Efficient method for the calculation of ballistic quantum transport. J. Appl. Phys. 93, 4628 (2003)

    Article  Google Scholar 

  4. The nextnano software can be obtained from http://www.nextnano.de and http://www.wsi.tum.de/nextnano. A demo that includes a Windows executable and the input files of the CBR examples presented in the figures of this article can be downloaded from this link: http://www.nextnano.de/customer/downloadCBR.php (Online Resource)

  5. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  6. Landauer, R.: Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Develop. 32, 306 (1988)

    MathSciNet  Google Scholar 

  7. Landauer, R.: Conductance from transmission: common sense points. Phys. Scr. T42, 110 (1992)

    Article  Google Scholar 

  8. Büttiker, M.: Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761 (1986)

    Article  Google Scholar 

  9. Büttiker, M.: Symmetry of electrical conduction. IBM J. Res. Develop. 32, 317 (1988)

    Article  Google Scholar 

  10. Di Carlo, A., Vogl, P., Pötz, W.: Theory of Zener tunneling and Wannier-Stark states in semiconductors. Phys. Rev. B 50, 8358 (1994)

    Article  Google Scholar 

  11. Büttiker, M.: Small normal-metal loop coupled to an electron reservoir. Phys. Rev. B 32, 1846 (1985)

    Article  Google Scholar 

  12. Venugopal, R., Paulsson, M., Goasguen, S., Datta, S., Lundstrom, M.S.: A simple quantum mechanical treatment of scattering in nanoscale transistors. J. Appl. Phys. 93, 5613 (2003)

    Article  Google Scholar 

  13. Kane, E.O.: Tunneling Phenomena in Solids. Plenum, New York (1969), ed. by E. Burstein and S. Lundqvist

    Google Scholar 

  14. Schulman, J.N., Chang, Y.C.: Reduced Hamiltonian method for solving the tight-binding model of interfaces. Phys. Rev. B 27, 2346 (1983)

    Article  Google Scholar 

  15. Lent, C., Kirkner, D.: The quantum transmitting boundary method. J. Appl. Phys. 67, 6353 (1990)

    Article  Google Scholar 

  16. Smrčka, L.: R-matrix and the coherent transport in mesoscopic systems. Superlattices Microstruct. 8, 221 (1990)

    Article  Google Scholar 

  17. Ferry, D.K., Goodnick, S.M.: Transport in Nanostructures. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  18. Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81, 7845 (1997)

    Article  Google Scholar 

  19. Kim, R., Datta, S., Lundstrom, M.S.: Influence of dimensionality on thermoelectric device performance. J. Appl. Phys. 105, 034506 (2009)

    Article  Google Scholar 

  20. Sabathil, M., Birner, S., Mamaluy, D., Vogl, P.: Efficient computational method for ballistic currents and application to single quantum dots. J. Comput. Electron. 2, 269 (2003)

    Article  Google Scholar 

  21. Sabathil, M., Mamaluy, D., Vogl, P.: Prediction of a realistic quantum logic gate using the contact block reduction method. Semicond. Sci. Technol. 19, S137 (2004)

    Article  Google Scholar 

  22. Khan, H.R., Mamaluy, D., Vasileska, D.: Quantum transport simulation of experimentally fabricated nano-FinFET. IEEE Trans. Electron Devices 54, 784 (2007)

    Article  Google Scholar 

  23. Vasileska, D., Mamaluy, D., Khan, H.R., Raleva, K., Goodnick, S.M.: Semiconductor device modeling. J. Comput. Theor. Nanosci. 5, 1 (2008)

    Article  Google Scholar 

  24. Zibold, T., Vogl, P., Bertoni, A.: Theory of semiconductor quantum-wire-based single- and two-qubit gates. Phys. Rev. B 76, 195301 (2007)

    Article  Google Scholar 

  25. Mamaluy, D., Vasileska, D., Sabathil, M., Zibold, T., Vogl, P.: Contact block reduction method for ballistic transport and carrier densities of open nanostructures. Phys. Rev. B 71, 245321 (2005)

    Article  Google Scholar 

  26. Ryu, H., Klimeck, G.: Contact block reduction method for ballistic quantum transport with semi-empirical sp3d5s* tight binding band models. In: 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT 2008), p. 349 (2008)

  27. Birner, S., Zibold, T., Andlauer, T., Kubis, T., Sabathil, M., Trellakis, A., Vogl, P.: nextnano: General Purpose 3-D Simulations. IEEE Trans. Electron Devices 54, 2137 (2007)

    Article  Google Scholar 

  28. Tan, I.-H., Snider, G.L., Chang, L.D., Hu, E.L.: A self-consistent solution of Schrödinger-Poisson equations using a nonuniform mesh. J. Appl. Phys. 68, 4071 (1990)

    Article  Google Scholar 

  29. ARPACK—ARnoldi PACKage, The ARPACK source code is available from http://www.netlib.org/arpack. Lehoucq, R.B., Sorensen, D.C., Yang, C., ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998)

  30. LAPACK—Linear Algebra PACKage, The LAPACK source code is available from http://www.netlib.org/lapack. Optimized libraries containing the LAPACK routines are included in several compiler suites

  31. BLAS—Basic Linear Algebra Subprograms, The BLAS source code is available from http://www.netlib.org/blas. Optimized libraries containing the BLAS routines are included in several compiler suites

  32. Antia, H.M.: Rational function approximations for Fermi-Dirac integrals. Astrophys. J. Suppl. 84, 101 (1993)

    Article  Google Scholar 

  33. Trellakis, A., Galick, A.T., Pacelli, A., Ravaioli, U.: Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures. J. Appl. Phys. 81, 7880 (1997)

    Article  Google Scholar 

  34. Laux, S.E., Kumar, A., Fischetti, M.V.: Analysis of quantum ballistic electron transport in ultrasmall silicon devices including space-charge and geometric effects. J. Appl. Phys. 95, 5545 (2004)

    Article  Google Scholar 

  35. Kubis, T., Trellakis, A., Vogl, P.: Self-consistent quantum transport theory of carrier capture in heterostructures. In: Saraniti, M., Ravaioli, U. (eds.) Proceedings of the 14th International Conference on Nonequilibrium Carrier Dynamics in Semiconductors (HCIS 14, Chicago, USA). Springer Proceedings in Physics, vol. 110, p. 369. Springer, Berlin (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Birner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birner, S., Schindler, C., Greck, P. et al. Ballistic quantum transport using the contact block reduction (CBR) method. J Comput Electron 8, 267–286 (2009). https://doi.org/10.1007/s10825-009-0293-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-009-0293-z

Keywords

Navigation