Nanowire transistor modeling: influence of ionized impurity and correlation effects

  • Marc Bescond
  • Changsheng Li
  • Michel Lannoo


This study presents two relevant effects influencing the electronic transport of nanowire transistors. We first focus on the ionized impurity impacts and calculate the current characteristics with a self-consistent three-dimensional (3D) Green’s function approach. The results show the effects of both acceptor and donor impurities on the physical electron properties. In particular, we emphasize that the presence of a donor induces different transport phenomena according to the applied gate bias. In a second part, we report a numerical study of the self-energy correction due to correlation effects from dynamic screening of the moving electron in silicon nanowire transistors. This many-body effect, which is not included in the usual Hartree approximation, is then incorporated self-consistently into a non-equilibrium Green’s function (NEGF) code. The results pinpoint the importance of dielectric confinement whose magnitude can not be neglected compared to its quantum counterpart in ultimate nanowire transistors.


Nanowire Transistors Impurity Green’s function Modeling Correlation effects Image charge potential 


  1. 1.
    Dollfus, P., Bournel, A., Galdin, S., Barraud, S., Hesto, P.: Effect of discrete impurities on electron transport in ultrashort MOSFET using 3-D MC simulation. IEEE Trans. Electron Dev. 51, 749 (2004) CrossRefGoogle Scholar
  2. 2.
    Vasileska, D., Ahmed, S.S.: Narrow-width SOI devices: the role of quantum-mechanical size quantization effect and unintentional doping on the device operation. IEEE Trans. Electron Dev. 52, 227 (2005) CrossRefGoogle Scholar
  3. 3.
    Gilbert, M.J., Ferry, D.K.: Vorticity and quantum interference in ultra-small SOI MOSFETs. IEEE Trans. Nanotechnol. 4, 355 (2005) CrossRefGoogle Scholar
  4. 4.
    Martinez, A., Bescond, M., Barker, J.R., Svizhenkov, A., Anantram, A., Millar, C., Asenov, A.: Self-consistent full 3D real-space NEGF simulator for studying of non-perturbative effects in nano-MOSFET. IEEE Trans. Electron Dev. 54, 2213 (2007) CrossRefGoogle Scholar
  5. 5.
    Wang, J., Rahman, A., Ghosh, A., Klimeck, G., Lundstrom, M.: On the validity of the parabolic effective-mass approximation for the I–V calculation of silicon nanowire transistors. IEEE Trans. Electron Dev. 52, 1589 (2005) CrossRefGoogle Scholar
  6. 6.
    Nehari, K., Cavassilas, N., Michelini, F., Bescond, M., Autran, J.L., Lannoo, M.: Full-band study of current across silicon nanowire transistors. Appl. Phys. Lett. 90, 132112 (2007) CrossRefGoogle Scholar
  7. 7.
    Jin, S., Tang, T.-W., Fischetti, M.V.: Simulation of silicon nanowire transistors using Boltzmann transport equation under relaxation time approximation. IEEE Trans. Electron Dev. 55, 727 (2008) CrossRefGoogle Scholar
  8. 8.
    Büttiker, M., Imry, Y., Landauer, R., Pinhas, S.: Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207 (1985) CrossRefGoogle Scholar
  9. 9.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997) Google Scholar
  10. 10.
    Delerue, C., Lannoo, M.: Nanostructures—Theory and Modelling. Springer, Berlin (2004) Google Scholar
  11. 11.
    Ferry, D.K., Goodnick, S.M.: Transport in Nanostructures. Cambridge University Press, Cambridge (1997) Google Scholar
  12. 12.
    Svizhenko M, A., Anantram, P., Govindan, T.R., Siegel, B., Venugopal, R.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91, 2343 (2002) CrossRefGoogle Scholar
  13. 13.
    Martinez, A., Barker, J.R., Svizhenko, A., Anantram, A., Bescond, M., Asenov, A.: Ballistic quantum simulators for studying variability in nanotransistors. J. Comput. Theor. Nanosci. 5, 2289 (2008) CrossRefGoogle Scholar
  14. 14.
    Bescond, M., Lannoo, M., Raymond, L., Michelini, F.: Physical impact of ionized impurities in silicon nanowire MOS transistors (2009, submitted) Google Scholar
  15. 15.
    Niquet, Y.-M., Lherbier, A., Quang, N.H., Fernandez-Serra, M.V., Blase, X., Delerue, C.: Electronic structure of semiconductor nanowire. Phys. Rev. B 73, 165319 (2006) CrossRefGoogle Scholar
  16. 16.
    Delerue, C., Allan, G., Lannoo, M.: Dimensionality-dependent self-energy corrections and exchange-correlation potential in semiconductor nanostructures. Phys. Rev. Lett. 90, 076803 (2003) CrossRefGoogle Scholar
  17. 17.
    Diarra, M., Delerue, C., Niquet, Y.-M., Allan, G.: Screening and polaronic effects induced by a metallic gate and a surrounding oxide on donor and acceptor impurities in silicon nanowires. J. Appl. Phys. 103, 073703 (2008) CrossRefGoogle Scholar
  18. 18.
    Bescond, M., Nehari, K., Autran, J.L., Cavassilas, N., Munteanu, D., Lannoo, M.: 3D quantum modeling and simulation of multiple-gate nanowire MOSFETs. In: International Electron Device Meeting (IEDM) Tech. Digest, p. 617, San Francisco, USA, December 2004 Google Scholar
  19. 19.
    Bescond, M., Cavassilas, N., Kalna, K., Nehari, K., Raymond, L., Autran, J.L., Lannoo, M., Asenov, A.: Ballistic transport in Si, Ge, and GaAs nanowire MOSFETs. In: International Electron Device Meeting (IEDM) Tech. Digest, p. 533, Washington, USA, December 2005 Google Scholar

Copyright information

© Springer Science+Business Media LLC 2009

Authors and Affiliations

  1. 1.IM2NP UMR CNRS 6242, Bt. IRPHETech. de Château-GombertMarseilleFrance

Personalised recommendations