Journal of Computational Electronics

, Volume 7, Issue 4, pp 509–520 | Cite as

Unified simulation of transport and luminescence in optoelectronic nanostructures

  • Sebastian Steiger
  • Ratko G. Veprek
  • Bernd Witzigmann


Computer simulation of microscopic transport and light emission in semiconductor nanostructures is often restricted to an isolated system of a single quantum well, wire or dot. In this work we report on the development of a simulator for devices with various kinds of nanostructures which exhibit quantization in different dimensionalities. Our approach is based upon the partition of the carrier densities within each quantization region into bound and unbound populations. A bound carrier is treated fully coherent in the directions of confinement, whereas it is assumed to be totally incoherent with a motion driven by classical drift and diffusion in the remaining directions. Coupling of the populations takes place through electrostatics and carrier capture. We illustrate the applicability of our approach with a well-wire structure.


Nanostructures Optoelectronics Transport Luminescence Quantum wells Quantum wires 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferry, D.K.: Quo vadis nanoelectronics? Phys. Stat. Sol. (C) 5, 17–22 (2008) CrossRefGoogle Scholar
  2. 2.
    Tian, B., Zheng, X., Kempa, T.J., Fang, Y., Yu, N., Yu, G., Huang, J., Lieber, C.M.: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007) CrossRefGoogle Scholar
  3. 3.
    Choi, H.J., Johnson, J.C., He, R., Lee, S.K., Kim, F., Pauzauskie, P., Goldberger, J., Saykally, R.J., Yang, P.: Self-organized gan quantum wire uv lasers. J. Phys. Chem. B 107, 8721–8725 (2003) CrossRefGoogle Scholar
  4. 4.
    Rafailov, E.U., Cataluna, M.A., Sibbett, W.: Mode-locked quantum-dot lasers. Nature Phot. 1, 395–401 (2007) CrossRefGoogle Scholar
  5. 5.
    Noda, S.: Seeking the ultimate nanolaser. Science 314, 260–261 (2006) CrossRefGoogle Scholar
  6. 6.
    Robledo, L., Elzerman, J., Jundt, G., Atatüre, M., Högele, A., Fält, S., Imamoglu, A.: Conditional dynamics of interacting quantum dots. Science 320, 772–775 (2008) CrossRefGoogle Scholar
  7. 7.
    Liu, Y., Neophytou, N., Klimeck, G., Lundstrom, M.S.: Band-structure effects on the performance of iii-v ultrathin-body mosfets. IEEE Trans. Electron. Dev. 55, 1116–1122 (2008) CrossRefGoogle Scholar
  8. 8.
    Aeberhard, U., Morf, R.H.: Microscopic non-equilibrium theory of quantum well solar cells. Phys. Rev. B 77, 125,343 (2008) CrossRefGoogle Scholar
  9. 9.
    Bufler, F.M., Gautschi, R., Erlebach, A.: Monte carlo stress engineering of scaled (110) and (100) bulk p-mosfets. IEEE Electr. Device L. 29, 369–371 (2008) CrossRefGoogle Scholar
  10. 10.
    Girndt, A., Jahnke, F., Knorr, A., Koch, S.W., Chow, W.W.: Multi-band bloch equations and gain spectra of highly excited ii-vi semiconductor quantum wells. Phys. Stat. Sol. (B) 202, 725–739 (1997) CrossRefGoogle Scholar
  11. 11.
    Kira, M., Jahnke, F., Hoyer, W., Koch, S.W.: Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures. Prog. Quant. Electron. 23, 189–279 (1999) CrossRefGoogle Scholar
  12. 12.
    Loeser, M., Witzigmann, B.: Multi-dimensional electro-opto-thermal modeling of broadband optical devices. IEEE J. Quant. Electron. 44, 505–514 (2008) CrossRefGoogle Scholar
  13. 13.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995) Google Scholar
  14. 14.
    Weetman, P., Wartak, M.S.: Wigner function modeling of quantum well semiconductor lasers using classical electromagnetic field coupling. J. Appl. Phys. 93, 9562–9575 (2003) CrossRefGoogle Scholar
  15. 15.
    Kane, E.O.: Energy band theory. In: Paul, W. (ed.) Handbook on Semiconductors, vol. 1, pp. 194–217. North Holland, Amsterdam (1982) Google Scholar
  16. 16.
    Trellakis, A., Zibold, T., Andlauer, T., Birner, S., Smith, R.K., Morschl, R., Vogl, P.: The 3d nanometer device project nextnano: Concepts, methods, results. J. Comput. Electron. 5, 285–289 (2006) CrossRefGoogle Scholar
  17. 17.
    Weman, H., Martinet, E., Rudra, A., Kapon, E.: Selective carrier injection into v-groove quantum wires. Appl. Phys. Lett. 73, 2959 (1998) CrossRefGoogle Scholar
  18. 18.
    Smith, R.A.: Semiconductors. Cambridge University Press, Cambridge (1978) Google Scholar
  19. 19.
    Piprek, J.: Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation. Academic Press, San Diego (2003) Google Scholar
  20. 20.
    Schroeder, D.: Modelling of Interface Carrier Transport for Device Simulation. Springer, Berlin (1994) MATHGoogle Scholar
  21. 21.
    Wu, C.M., Yang, E.S.: Carrier transport across heterojunction interface. Solid-State Electron. 22, 241–248 (1979) CrossRefGoogle Scholar
  22. 22.
    Grupen, M., Hess, K.: Simulation of carrier transport and nonlinearities in quantum-well laser diodes. IEEE J. Quant. Electron. 34(1), 120–140 (1998) CrossRefGoogle Scholar
  23. 23.
    Veprek, R.G., Steiger, S., Witzigmann, B.: Ellipticity and the spurious solution problem of k⋅p envelope equations. Phys. Rev. B 76, 165,320 (2007) CrossRefGoogle Scholar
  24. 24.
    Veprek, R.G., Steiger, S., Witzigmann, B.: Reliable kp band structure calculation for nanostructures using finite elements. J. Comput. Electron. (2008, this issue) Google Scholar
  25. 25.
    Chuang, S.L.: Physics of Optoelectronic Devices. Wiley, New York (1995) Google Scholar
  26. 26.
    Haug, H., Koch, S.W.: Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific, Singapore (2004) Google Scholar
  27. 27.
    Kerkhoven, T.: On the scharfetter-gummel box-method. In: S. Selberherr, H. Stippel, E. Strasser (eds.) Simulation of Semiconductor Devices and Processes, vol. 5, p. 237 (1993) Google Scholar
  28. 28.
    Schenk, O., Gaertner, K.: Solving unsymmetric sparse systems of linear equations with pardiso. J. Future Gen. Comp. Syst. 20, 475–487 (2004) CrossRefGoogle Scholar
  29. 29.
    Davis, T.A.: Algorithm 832: Umfpack, an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 196–199 (2004) MATHCrossRefGoogle Scholar
  30. 30.
    Roellin, S.: Parallel iterative solvers in computational electronics. PhD Thesis ETH No. 15859. Hartung-Gorre, Konstanz (2005) Google Scholar
  31. 31.
    de Mari, A.: An accurate numerical steady-state one-dimensional solution of the p-n junction. Solid-State Electron. 11, 33–58 (1968) CrossRefGoogle Scholar
  32. 32.
    Trellakis, A., Galick, A.T., Pacelli, A., Ravaioli, U.: Iteration scheme for the solution of the two-dimensional schroedinger-poisson equations in quantum structures. J. Appl. Phys. 81, 7880–7884 (1997) CrossRefGoogle Scholar
  33. 33.
    Arora, N.D., Hauser, J.R., Roulston, D.J.: Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Trans. Electron Devices 29, 292–295 (1982) CrossRefGoogle Scholar
  34. 34.
    Sotoodeh, M., Khalid, A.H., Rezazadeh, A.: Empirical low-field mobility model for iii-v compounds applicable in device simulation codes. J. Appl. Phys. 87, 2890–2900 (2000) CrossRefGoogle Scholar
  35. 35.
    Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for iii-v compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001) CrossRefGoogle Scholar
  36. 36.
    Adachi, S.: Properties of Group-IV, II-V and II-VI Semiconductors. Wiley, New York (2005) Google Scholar
  37. 37.
    Witzigmann, B., Bäcker, A., Odermatt, S.: Physics and simulation of vertical-cavity surface-emitting lasers. J. Comput. Theoret. Nanosci. 5, 1–14 (2007) Google Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  • Sebastian Steiger
    • 1
  • Ratko G. Veprek
    • 1
  • Bernd Witzigmann
    • 1
  1. 1.Integrated Systems Laboratory, Department of Information Technology and Electrical EngineeringETH ZurichZurichSwitzerland

Personalised recommendations