Advertisement

Journal of Computational Electronics

, Volume 7, Issue 3, pp 384–389 | Cite as

Joule heating in molecular tunnel junctions: application to C60

  • Alessandro Pecchia
  • Giuseppe Romano
  • Aldo Di Carlo
  • Alessio Gagliardi
  • Thomas Frauenheim
Article

Abstract

First-principle calculations based on density functional and non-equilibrium Green’s functions are used to compute the power emitted in conducting molecular systems due to scattering with localized vibrations. The balance between the rate of phonons emitted and dissipated into the contacts allows the computation of the steady-state distribution of phonon quanta localized in the junction, from which we extract the local temperature reached by the molecule. The model includes two critical quantities; (i) the rate of phonon emitted in the junction due to electron-phonon scattering and (ii) a microscopic approach for the computation of the phonon decay rate, accounting for the dynamical coupling between the vibrational modes localized on the molecule and the contact phonons. The method is applied to the discussion of several limiting conditions and trends, depending on electron-phonon coupling, incoherent transmission and phonon dissipation rates, using both analytical results and numerical calculations.

Keywords

Molecular electronics Electron-vibron scattering Power dissipation NEGF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huang, Z., et al.: Measurement of current-induced local heating in a single molecule junction. Nano Lett. 6, 1240 (2006) CrossRefGoogle Scholar
  2. 2.
    Galperin, M., et al.: Molecular transport junctions: vibrational effects: ArXiv, Cond-Mat, p. 06812085 (2006) Google Scholar
  3. 3.
    Todorov, T.N., et al.: Current-induced forces in atomic scale conductors. Phys. Rev. Lett. 86, 3606 (2001) CrossRefGoogle Scholar
  4. 4.
    Chen, Y.C., Di Ventra, M.: Effect of electron-phonon scattering and shot noise in nanoscale junctions. Phys. Rev. Lett. 95, 166802 (2005) CrossRefGoogle Scholar
  5. 5.
    Pecchia, A., et al.: Incoherent electron-phonon scattering in octanethiols. Nano Lett. 4, 2109 (2004) CrossRefGoogle Scholar
  6. 6.
    Elstner, M., et al.: Self-consistent charge density tight-binding method for simulation of complex materials properties. Phys. Rev. B 58, 7260 (1998) CrossRefGoogle Scholar
  7. 7.
    Frauenheim, T., et al.: A self-consistent charge density functional based tight-binding method for predictive materials simulations in physics, chemistry and biology. Phys. Status Solidi (b) 271, 41 (2000) CrossRefGoogle Scholar
  8. 8.
    Pecchia, A., et al.: Theory of heat dissipation in molecular electronics. Phys. Rev. B 74, 63 (2006) Google Scholar
  9. 9.
    Solomon, G., et al.: Understanding the inelastic tunneling spectra of alkanedithiols on gold. J. Chem. Phys. 124, 094704 (2006) CrossRefGoogle Scholar
  10. 10.
    Meir, Y., Wingreen, N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68, 2512 (1992) CrossRefGoogle Scholar
  11. 11.
    Keldysh, L.V.: Diagram technique for nonequilibrium processes. Sov. Phys. JETP 20, 1018 (1965) MathSciNetGoogle Scholar
  12. 12.
    Kadanoff, L.P., Baym, G.: Quantum Statistical Mechanics. W.A. Banjamin, New York (1962) MATHGoogle Scholar
  13. 13.
    Paulsson, M., et al.: Modeling inelastic phonon scattering in atomic- and molecular-wire junctions. Phys. Rev. B 72, 201101(R) (2005) CrossRefGoogle Scholar
  14. 14.
    Nitzan, A.: Chemical Dynamics in Condensed Phases. Oxford University Press, London (2006) Google Scholar
  15. 15.
    Romano, G., et al.: Coupling of molecular vibrons with contact phonon reservoirs. J. Phys. Cond. Matt. 19, 215207 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  • Alessandro Pecchia
    • 1
  • Giuseppe Romano
    • 1
  • Aldo Di Carlo
    • 1
  • Alessio Gagliardi
    • 2
  • Thomas Frauenheim
    • 2
  1. 1.CNR-INFM, Department of Electronics and Electrical EngineeringUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.Bremen Center for Computational Materials ScienceBremenGermany

Personalised recommendations