Journal of Computational Electronics

, Volume 7, Issue 3, pp 403–406 | Cite as

NEMO-3D based atomistic simulation of a double quantum dot structure for spin-blockaded transport

  • Bhaskaran Muralidharan
  • Hoon Ryu
  • Zhen Huang
  • Gerhard Klimeck


This work combines an atomistic electronic structure calculation with many-body rate equations to simulate the current-voltage (I–V) characteristics of a weakly-coupled Double Quantum Dot (DQD) system in the spin-blockade regime. Here we performed a NEMO-3D based, atomistic simulation of the geometry of the DQD to obtain its single electron eigen-states, hopping parameters, and Coulomb integrals followed by the evaluation of I–V characteristics with the many-electron spectrum of the DQD system, derived from this single-electron parameter set. The many-electron spectra and wave-functions are evaluated by exact-diagonalization of the many-electron system. The Hamiltonian is constructed from single electron eigen-states, hopping parameters and Coulomb integrals derived from atomistic NEMO 3-D simulations. Calculated I–V characteristics exhibit multiple regions of prominent Negative Differential Resistances (NDRs) that resemble the experimental trends. Unlike resonant tunnelling devices, however, level crossings in DQDs are negligible, and the NDRs result from a delicate interplay of delocalization, orbital offset and Coulomb interaction.


Double quantum dots NEMO-3D Spin blockade 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ono, K., Austing, D.G., Tokura, Y., Tarucha, S.: Current rectification by Pauli exclusion in a weakly coupled quantum dot system. Science 297, 1313 (2002) CrossRefGoogle Scholar
  2. 2.
    Koppens, F.H.L., Buizert, C., Tielrooij, K.J., Vink, I.T., Nowack, K.C., Meunier, T., Kouwenhoven, L.P., Vandersypen, L.M.K.: Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 776 (2006) CrossRefGoogle Scholar
  3. 3.
    Muralidharan, B., Datta, S.: Generic model for current collapse in spin blockaded transport. Phys. Rev. B 76, 035432 (2007) CrossRefGoogle Scholar
  4. 4.
    Klimeck, G., Oyafuso, F., Boykin, T.B., Bowen, R.C., von Allmen, P.: Development of a nanoelectronic 3-D (NEMO 3-D) simulator for multimillion atom simulations and its application to alloyed quantum dots. Comput. Model. Eng. Sci. (CMES) 3(5), 601 (2002). (INVITED) MATHGoogle Scholar
  5. 5.
    Klimeck, G., Ahmed, S., Bae, H., Kharche, N., Rahman, R., Clark, S., Haley, B., Lee, S., Naumov, M., Ryu, H., Saied, F., Prada, M., Korkusinski, M., Boykin, T.B.: Atomistic simulation of realistically sized nanodevices using NEMO 3-D: Part I—models and benchmarks. IEEE Trans. Electron Devices 54(9), 2079 (2007). (INVITED) Special Issue on Nanoelectronic Device Modeling CrossRefGoogle Scholar
  6. 6.
    Klimeck, G., Ahmed, S., Kharche, N., Korkusinski, M., Usman, M., Prada, M., Boykin, T.B.: Atomistic simulation of realistically sized nanodevices using NEMO 3-D: Part II—applications. IEEE Trans. Electron Devices 54(9), 2090–2099 (2007). (INVITED) Special Issue on Nanoelectronic Device Modeling CrossRefGoogle Scholar
  7. 7.
    Beenakker, C.W.J.: Theory of Coulomb blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 44, 1646 (1991) CrossRefGoogle Scholar
  8. 8.
    Klimeck, G., Chen, G., Datta, S.: Conductance spectroscopy of coupled quantum dots. Phys. Rev. B 50, 2316 (1994) CrossRefGoogle Scholar
  9. 9.
    Datta, S.: Quantum Transport: Atom to Transistor. Cambridge Univ. Press, Cambridge (2005) MATHGoogle Scholar
  10. 10.
    Lee, S., Jonsson, L., Wilkins, J.W., Bryant, G.W., Klimeck, G.: Electron-hole correlations in semiconductor quantum dots with tight-binding wavefunctions. Phys. Rev. B 63, 195318 (2001) CrossRefGoogle Scholar
  11. 11.
    Leung, K., Whaley, K.B.: Electron-hole interactions in semiconductor nanocrystals. Phys. Rev. B 56, 7455 (1997) CrossRefGoogle Scholar
  12. 12.
    Hausler, W., Kramer, B.: Interacting electrons in a one-dimensional quantum dot. Phys. Rev. B 47, 16353 (1993) CrossRefGoogle Scholar
  13. 13.
    Thomas, L.H.: Proc. Camb. Philos. Soc. 23, 542 (1927) MATHCrossRefGoogle Scholar
  14. 14.
    Fermi, E.: Z. Phys. 48, 73 (1928) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  • Bhaskaran Muralidharan
    • 1
  • Hoon Ryu
    • 1
  • Zhen Huang
    • 2
  • Gerhard Klimeck
    • 1
  1. 1.School of Electrical and Computer Engineering and Network for Computational NanotechnologyPurdue UniversityWest LafayetteUSA
  2. 2.School of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations