Advertisement

Journal of Computational Electronics

, Volume 5, Issue 2–3, pp 171–175 | Cite as

Validity of the effective potential approach for the simulation of quantum confinement effects: A Monte-Carlo study

  • M.-A. Jaud
  • S. Barraud
  • P. Dollfus
  • H. Jaouen
  • F. De Crecy
  • G. Le Carval
Article

Abstract

In the last years, different techniques have been proposed to include quantization effects in simulation of electron transport in nanoscale devices. The Effective Potential approach has been demonstrated as a possible correction method for describing these effects in Monte-Carlo device simulation. In this paper we discuss the numerical implementation and the actual ability of this approach to incorporating electrostatic quantum effects in the frame of an existing Monte-Carlo code (MONACO). A new methodology based on a Design-Of-Experiment is proposed for reproducing the Schrödinger-Poisson electron density profile. This original methodology allows to clearly highlight the validity limits of the Effective Potential correction for the description of quantization effects in a double-gate nMOSFET.

Keywords

Quantum effects Effective potential Monte-Carlo method Double-gate MOSFET 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Technology Roadmap for Semiconductors (2003)Google Scholar
  2. 2.
    Shifren, L., Ferry, D.K.: Physica B 314, 72–75 (2002)CrossRefGoogle Scholar
  3. 3.
    Kosina, H., Nedjalkov, M., Selberherr, S.: Nanotech 2, 190–193 (2003)Google Scholar
  4. 4.
    Monsef, F., Dollfus, P., Galdin, S.: JAP 95, 3587–3593 (2004)Google Scholar
  5. 5.
    Ferry, D.K., Akis, R., Vasileska, D.: IEDM Tech. Dig. 287–290 (2000)Google Scholar
  6. 6.
    Akis, R., Milicic, S.N., Ferry, D.K., Vasileska, D.: MSM 550–553 (2001)Google Scholar
  7. 7.
    Watling, J.R., Brown, A.R., Asenov, A., Ferry, D.K.: SISPAD 82–85 (2001)Google Scholar
  8. 8.
    Li, Y.: IEEE Trans. Nanotechnol. 1, 238–242 (2002)CrossRefGoogle Scholar
  9. 9.
    Palestri, P., Esseni, D., Abramo, A., Clerc, R., Selmi, L.: ESSDERC Tech. Digest 407 (2003)Google Scholar
  10. 10.
    Tsuchiya, H., Ravaioli, U.: J. Appl. Phys. 89, 4023–4029 (2001)CrossRefGoogle Scholar
  11. 11.
    Tang, T.-W., Wu, B.: Semicond. Sci. Technol. 19, 54–60 (2004)CrossRefGoogle Scholar
  12. 12.
    Winstead, B., Ravaioli, U.: IEEE Trans. Electr. Dev. 50, 440–446 (2003)CrossRefGoogle Scholar
  13. 13.
    Saint Martin, J., Bournel, A., Dollfus, P.: IEEE Trans. Electr. Dev. 51, 1148–1155 (2004)CrossRefGoogle Scholar
  14. 14.
    Press, W.H., Teukolsky, S.A., Wetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran 77, p. 107. Cambridge University Press (1992)Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • M.-A. Jaud
    • 1
    • 2
    • 3
  • S. Barraud
    • 1
  • P. Dollfus
    • 3
  • H. Jaouen
    • 2
  • F. De Crecy
    • 1
  • G. Le Carval
    • 1
  1. 1.CEA-LETI/D2NT/LSCDPGrenoble cedex 9France
  2. 2.STMicroelectronicsCrollesFrance
  3. 3.Institut d’Electronique Fondamentale, CNRSUniversité Paris SudOrsayFrance

Personalised recommendations