Journal of Computational Electronics

, Volume 5, Issue 2–3, pp 115–118 | Cite as

Strain effects in SiN-passivated GaN-based HEMT devices

  • Fabio Sacconi
  • Michael Povolotskyi
  • Aldo Di Carlo


The use of a passivating layer can reduce or even eliminate surface effects responsible for limiting both the RF current and breakdown voltage of AlGaN/GaN HEMTs. To study the effect of passivation on electrical characteristics of GaN-based devices, we have developed a macroscopic model of strain in SiN/AlGaN/GaN heterostructure, considering the system as a free-standing one. Basing on the strain results, we have calculated the strain map for a SiN-passivated structure and the electron sheet charge density in the channel. Results have been compared with experimental measurements and with an alternative passivation model.


Surface charges HEMT Nitrides Strain Piezoelectric effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daumiller, I., Theron, D., Gaquiere, C., Vescan, A., Dietrich, R., Wieszt, A., Leier, H., Vetury, R., Mishra, U.K., Smorchkova, I.P., Keller, S., Nguyen, C., Kohn, E.: Current instabilities in gan-based devices. IEEE Electron Device Letters 22, 62 (2001)CrossRefGoogle Scholar
  2. 2.
    Sleiman, A., Di Carlo, A., Verzellesi, G., Meneghesso, E., Zanoni, E.: Current collapse associated with surface states in gan-based hemt’s theoretical/experimental investigations. In: Wachutka, G., Schrag, G. (eds.), Simulation of Semiconductor Processes and Devices. Springer Verlag, Wien (2004)Google Scholar
  3. 3.
    Green, B.M., Chu, K.K., Chumbes, E.M., Smart, J.A., Shealy, J.R., Eastman, L.F.: The effect of surface passivation on the microwave characteristics of undoped algan-gan hemts. IEEE Electron Device Letters 21, 268 (2000)CrossRefGoogle Scholar
  4. 4.
    Shealty, J.R., Prunty, T.R., Chumbes, E.M., Ridley, B.K.: Journal of Crystal Growth 250, 7 (2003)CrossRefGoogle Scholar
  5. 5.
    Jogai, B.: Three-dimensional strain field calculations in coupled InAs/GaAs quantum dots. Journal of Applied Physics 88, 5050 (2000)CrossRefGoogle Scholar
  6. 6.
    Marder, M.: Condensed Matter Physics. Wiley-Interscience, (2000)Google Scholar
  7. 7.
    Fiorentini, V., Bernardini, F., Ambacher, O.: Applied Physics Letters 80, 1204 (2002).CrossRefGoogle Scholar
  8. 8.
    Xu, Y.-N., Ching, W.Y.: Physical Review B 51, 17379 (1995)CrossRefGoogle Scholar
  9. 9.
    Cook, T.E., Fulton, C.C., Mecouch, W.J., Davis, R.F., Lugovsky, G., Nemanich, R.J.: Journal of Applied Physics 94, 3949 (2003)CrossRefGoogle Scholar
  10. 10.
    Derluyn, J., Boeykens, S., Cheng, K., Vandersmissen, R., Das, J., Ruythooren, W., Degroote, S., Leys, M.R., Germain, M., Borghs, G.: Journal of Applied Physics 98, 54501 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Fabio Sacconi
    • 1
  • Michael Povolotskyi
    • 1
  • Aldo Di Carlo
    • 1
  1. 1.MINAS-Dept. Elect. Eng.University of Roma “Tor Vergata”RomeItaly

Personalised recommendations