Journal of Computational Electronics

, Volume 5, Issue 4, pp 267–273 | Cite as

SSOR preconditioned GPBiCG method for the linear interference cancellation of asynchronous CDMA systems

  • L. Yang
  • R. S. Chen
  • Y. M. Siu
  • K. K. Soo


The decorrelator or the linear minimum mean-squared-error (LMMSE) detector has its computational complexity of O(K 3) where K is the number of users. On the other hand, the computational complexity of iterative detector algorithms such as conjugate gradient (CG) and generalized product bi-conjugate gradient (GPBiCG) methods only require the computational complexity O(K 2) per iteration. In this paper, the symmetric successive overrelaxation (SSOR) preconditioning scheme is applied to the GPBiCG method. The performance of the detectors is investigated and it is found that the SSOR preconditioned GPBiCG method can provide significantly faster convergence.


Code-division multiple access Interference cancellation Linear multiuser detection Iterative methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moshavi, S.: Multi-user detection for DS-CDMA communications. IEEE Commun. Mag. 34, 124–136 (1996)CrossRefGoogle Scholar
  2. 2.
    Verdú, S.: Minimum probability of error for asynchronous Gaussian multiple access channels. IEEE Trans. Inform. Theory 32, 85–96 (1986)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Lupas, R., Verdú, S.: Near-far resistance of multiuser detectors in asynchronous channels. IEEE Trans. Commun. 38, 496–508 (1990)MATHCrossRefGoogle Scholar
  4. 4.
    Xie, Z., Short, R.T., Rushforth, C.K.: A family of suboptimum detector for coherent multiuser communications. IEEE J. Select. Areas Commun. 8, 683–690 (1990)CrossRefGoogle Scholar
  5. 5.
    Juntti, M.J.: Linear multiuser detector update in synchronous dynamic CDMA systems. In: Proceedings of the IEEE International Symposium, vol. 3, pp. 980–984. Personal, Indoor and Mobile Radio Communication, Toronto, Ontario, Canada (1995)Google Scholar
  6. 6.
    Wijayasuriya, S.S.H., Norton, G.H., McGeehan, J.P.: A sliding window decorrelating receiver for multiuser DS-CDMA mobile radio networks. IEEE Trans. Veh. Technol. 45(3), 503–521 (1996)CrossRefGoogle Scholar
  7. 7.
    Verdú, S.: Recent progress in multiuser detection. In: Proceedings of the 1988 International Conference Advances in Communication and Control Systems, pp. 66–77 (1988)Google Scholar
  8. 8.
    Wei, L., Rasmussen, L.K.: Near ideal noise whitening filter for an asynchronous time-varying CDMA system. IEEE Trans. Commun. 44, 1355–1361 (1996)CrossRefGoogle Scholar
  9. 9.
    Alexander, P.D., Rasmussen, L.K.: On the windowed Cholesky factorization of the time-varying asynchronous CDMA channel. IEEE Trans. Commun. 46, 735–737 (1998)MATHCrossRefGoogle Scholar
  10. 10.
    Juntti, M.J., Aazhang, B.: Finite memory-length linear multiuser detection for asynchronous CDMA communications. IEEE Trans. Commun. 45, 611–622 (1997)CrossRefGoogle Scholar
  11. 11.
    Juntti, M.J., Aazhang, B., Lilleberg, J.O.: Iterative implementation of linear multiuser detection for dynamic asynchronous CDMA systems. IEEE Trans. Commun. 46, 503–508 (1998)CrossRefGoogle Scholar
  12. 12.
    Elders-Boll, H., Schotten, H.D., Busboom, A.: Efficient implementation of linear multiuser detectors for asynchronous CDMA systems by linear interference cancellation. Euro. Trans. Telecommun. 9(4), 427–437 (1998)CrossRefGoogle Scholar
  13. 13.
    Buehrer, R.M., Nicoloso, S.P., Gollamudi, S.: Linear versus nonlinear interference cancellation. J. Commun. Networks 1, 118–133 (1999)Google Scholar
  14. 14.
    Wang, X., Poor, H.V.: Space-time multiuser detection in multipath CDMA channels. IEEE Trans. Signal Processing 47, 2356–2374 (1999)MATHCrossRefGoogle Scholar
  15. 15.
    Tan, P.H., Rasmussen, L.K.: Linear interference cancellation in CDMA based on iterative techniques for linear equation systems. IEEE Trans. Commun. 48, 2099–2108 (2000)CrossRefGoogle Scholar
  16. 16.
    Sawahashi, M., Andoh, H., Higuchi, K.: Interference rejection weight control for pilot symbol-assisted coherent multistage interference canceller using recursive channel estimation in DS-CDMA mobile radio. IEICE Trans. Fundamentals E81-A, 957–970 (1998)Google Scholar
  17. 17.
    Rasmussen, L.K., Alexander, P.D., Lim, T.J.: A linear model for CDMA signals received with multiple antennas over multipath fading channels. In: Swarts, F., van Rooyen, P., Oppermann, I., Lötter, M. (eds.) CDMA Techniques for 3rd Generation Mobile Systems. Kluwer: Norwell, MA Chap. 2 (1998)Google Scholar
  18. 18.
    Juntti, M.J., Lilleberg, J.O.: Implementation aspects of linear multiuser detectors in asynchronous CDMA systems. In: Proceedings of the IEEE International Symposium Spread Spectrum Techniques and Applications, vol. 2, pp. 842–846. Mainz, Germany (1996)Google Scholar
  19. 19.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS-Publishing Company (1996)Google Scholar
  20. 20.
    Zhang, S.-L.: GPBi-CG: Generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 18, 537–551 (1997)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Axelsson, O., Kolotilina, L.Yu.: Preconditioned conjugate gradient methods. In: Dold, A., Eckmann, B., Takens, F. (eds.) Proceedings 1989, in Lecture Notes in Mathematics, vol. 1457, Springer-Verlag (1990)Google Scholar
  22. 22.
    Kershaw, D.S.: The incomplete Cholesky-conjugate gradient method for the solution of systems of linear equations. J. Comput. Phys. 26, 43–65 (1978)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Chen, R.S., Yung, E.K.N., Yang, A.H., Chan, C.H.: Application of preconditioned Krylov subspace iterative FFT techniques to Method of Lines for analysis of the infinite plane metallic grating. Micro. Opt. Technol. Lett. 35(2) 160–167 (2002)CrossRefGoogle Scholar
  24. 24.
    Chen, R.S., Tsang, K.F., Mo, L.: Wavelet based sparse approximate inverse preconditioned CG algorithm for fast analysis of microstrip circuits. Micro. Opt. Technol. Lett. 35(5), 383–389 (2002)CrossRefGoogle Scholar
  25. 25.
    Chen, R.S., Yung, E.K.N., Tsang, K.F., Mo, L.: Block-Toeplitz-Matrix-based CG-FFT Algorithm with Inexact Sparse Preconditioner for Analysis of Microstrip Circuits. Micro. Opt. Technol. Lett. 34(5), 347–351 (2002)CrossRefGoogle Scholar
  26. 26.
    Chen, R.S., Yung, E.K.N., Chan, C.H., Wang, D.X., Fang, D.G.: Application of the SSOR preconditioned conjugate gradient algorithm to the vector FEM for 3-dimensional full-wave analysis of Electromagnetic-field boundary value problems. IEEE Trans. Micro. Theory Tech. 50(4), 1165–1172 (2002)CrossRefGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  1. 1.Department of Communication EngineeringNanjing University of Science & TechnologyNanjingP.R. China
  2. 2.Department of Electronic EngineeringCity University of Hong KongHong KongP.R. China

Personalised recommendations