Advertisement

Journal of Computational Electronics

, Volume 6, Issue 1–3, pp 363–365 | Cite as

Shockley-Ramo theorem measures conformation changes of ion channels and proteins

  • Bob Eisenberg
  • Wolfgang Nonner
Article

Abstract

Theorems are rarely used in biology because they rarely help the descriptive experimentation to which biologists are devoted. A generalization of Kirchoff’s current law—the Shockley-Ramo (SR) theorem [1–6]—seems an exception. SR allows interpretation of macroscopic scale ‘gating’ currents associated with atomic scale charge movements within proteins.

Keywords

Ion channels Shockley-Ramo Gating current 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yoder, P.D., et al.: Optimized terminal current calculation for Monte Carlo device simulation. IEEE Trans. Comp.-Aided Design Integr. Circuits Syst. 16, 1082–1087 (1997)CrossRefGoogle Scholar
  2. 2.
    Yoder, P.D., Gärtner, K., Fichtner, W.: A generalized Ramo-Shockley theorem for classical to quantum transport at arbitrary frequencies. J. Appl. Phys. 79, 1951–1954 (1996)CrossRefGoogle Scholar
  3. 3.
    Shockley, W.: Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635–636 (1938)CrossRefGoogle Scholar
  4. 4.
    Ramo, S.: Currents induced by electron motion. Proc. IRE. 27, 584–585 (1939)Google Scholar
  5. 5.
    Pellegrini, B.: Electric charge motion, induced current, energy balance, and noise. Phys. Rev. B 34, 5921–5924 (1986)CrossRefGoogle Scholar
  6. 6.
    Kim, H., et al.: An extended proof of the Ramo-Shockley theorem. Solid-State Elect. 34, 1251–1253 (1991)CrossRefGoogle Scholar
  7. 7.
    Bottinger, E., Furshpan, E.: Recording flight movements in insects. Science 116, 60–61 (1952)CrossRefGoogle Scholar
  8. 8.
    Almers, W.: Gating currents and charge movements in excitable membranes. Rev. Physiol. Biochem. Pharmacol. 82, 96–190 (1978)CrossRefGoogle Scholar
  9. 9.
    Armstrong, C.M.: Ionic pores, gates, and gating currents. Quart. Rev. Biophys. 7, 179–210 (1975)Google Scholar
  10. 10.
    Armstrong, C.M.: Sodium channels and gating currents. Physiol. Rev. 61, 644–683 (1981)Google Scholar
  11. 11.
    Bezanilla, F.: Gating of sodium and potassium channels. J. Membr. Biol. 88(2), 97–111 (1985)CrossRefGoogle Scholar
  12. 12.
    Bezanilla, F.: The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80(2), 555–592 (2000)Google Scholar
  13. 13.
    Bezanilla, F., Armstrong, C.M.: A low-cost signal averager and data-acquisition device. Am. J. Physiol. 232(5), C211–C215 (1977)Google Scholar
  14. 14.
    Chanda, B., et al.: Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436(7052), 852–856 (2005)CrossRefGoogle Scholar
  15. 15.
    Hille, B.: Ionic Channels of Excitable Membranes. 3rd ed. pp. 1–814. Sinauer Associates Inc, Sunderland (2001)Google Scholar
  16. 16.
    Nonner, W.: Effects of Leiurus scorpion venom on the “gating’ current in myelinated nerve. Adv. Cytopharmacol. 3, 345–352 (1979)Google Scholar
  17. 17.
    Roux, M.J., et al.: Fast inactivation in Shaker K+ channels. Properties of ionic and gating currents. J. Gen. Physiol. 111(5), 625–638 (1998)CrossRefGoogle Scholar
  18. 18.
    Seoh, S.A., et al.: Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16(6), 1159–1167 (1996)CrossRefGoogle Scholar
  19. 19.
    Sigworth, F.: Voltage gating of ion channels. Quart. Rev. Biophys. 27, 1–40 (1994)Google Scholar
  20. 20.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)Google Scholar
  21. 21.
    Schneider, M., Chandler, W.K.: Voltage-dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling. Nature (London) 242, 244–246 (1973)CrossRefGoogle Scholar
  22. 22.
    Bezanilla, F., Armstrong, C.M.: Inactivation of the sodium channel. I. Sodium current experiments. J. Gen. Physiol. 70(5), 549–566 (1977)CrossRefGoogle Scholar
  23. 23.
    Bezanilla, F., Rojas, E., Taylor, R.E.: Sodium and potassium conductance changes during a membrane action potential. J. Physiol. (London) 211, 729–751 (1970)Google Scholar
  24. 24.
    Bezanilla, F., Rojas, E., Taylor, R.E.: Time course of the sodium influx in squid giant axon during a single voltage clamp pulse. J. Physiol. 207(1), 151–164 (1970)Google Scholar
  25. 25.
    Weiss, T.F.: Cellular Biophysics, vol. 1 and 2, p. 552. MIT Press, Cambridge MA USA (1996)Google Scholar
  26. 26.
    Hodgkin, A.L.: Chance and Design, p. 401. Cambridge University Press, New York (1992)Google Scholar
  27. 27.
    Cole, K.S.: Four lectures on biophysics. Institute of Biophysics, University of Brazil, Rio De Janeiro (1947)Google Scholar
  28. 28.
    Huxley, A.: Kenneth Stewart Cole. Biograph. Mem. Roy. Soc. 38, 99–110 (1992)Google Scholar
  29. 29.
    Hodgkin, A., Huxley, A., Katz, B.: Ionic currents underlying activity in the giant axon of the squid. Arch. Sci. Physiol. 3, 129–150 (1949)Google Scholar
  30. 30.
    Neher, E., Sakmann, B.: Single channel currents recorded from the membrane of denervated muscle fibers. Nature 260, 799–802 (1976)CrossRefGoogle Scholar
  31. 31.
    Neher, E., Sakmann, B., Steinbach, J.H.: The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflügers. Arch. 375, 219–228 (1978)CrossRefGoogle Scholar
  32. 32.
    Sakmann, B., Neher, E.: Single Channel Recording, 2nd ed, p. 700. Plenum New York (1995)Google Scholar
  33. 33.
    Miller, C. (ed.): Ion Channel Reconstitution. Plenum, New York (1986)Google Scholar
  34. 34.
    Rudy, B., Iverson, L.E., (eds.): Ion Channels Methods in Enzymology. vol. 207, p. 917. Academic, New York (1992)Google Scholar
  35. 35.
    Bezanilla, F.: Single sodium channels from the squid giant axon. Biophys. J. 52(6), 1087–1090 (1987)CrossRefGoogle Scholar
  36. 36.
    Roux, B.: Influence of the membrane potential on the free energy of an intrinsic protein. Biophys. J. 73(12), 2980–2989 (1997)MathSciNetGoogle Scholar
  37. 37.
    Nonner, W., et al.: Relating microscopic charge movement to macroscopic currents: the Ramo-Shockley theorem applied to ion channels. Biophys. J. 87(6), 3716–3722 (2004)CrossRefGoogle Scholar
  38. 38.
    Aboud, S., et al.: A poisson P3M force field scheme for particle-based simulations of ionic liquids. J. Comput. Elect. 3, 117–133 (2004)CrossRefGoogle Scholar
  39. 39.
    Aksimentiev, A., Schulten, K.: Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J. 88(6), 3745–3761 (2005)CrossRefGoogle Scholar
  40. 40.
    Saraniti, M., Aboud, S., Eisenberg, R.: The simulation of ionic charge transport in biological ion channels: an introduction to numerical methods. Rev. Comp. Chem. 22, 229–294 (2005)CrossRefGoogle Scholar
  41. 41.
    van der Straaten, T.A., et al.: BioMOCA—a Boltzmann transport Monte Carlo model for ion channel simulation. Mole. Simul. 31, 151–171 (2004)CrossRefGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  1. 1.Department of Molecular BiophysicsRush University Medical CenterChicagoUSA
  2. 2.Miller School of MedicineUniversity of MiamiMiamiUSA

Personalised recommendations