Journal of Computational Electronics

, Volume 6, Issue 1–3, pp 321–324 | Cite as

Dissipative transport in CNTFETs

  • Mahdi Pourfath
  • Hans Kosina
  • Siegfried Selberherr


Based on the non-equilibrium Green’s function formalism the performance of carbon nanotube field-effect transistors has been studied. The effects of elastic scattering and the impact of parameters of inelastic scattering, such as electron-phonon coupling strength and phonon energy, on the device performance are analyzed.


Electron-phonon interaction Non-equilibrium Green’s function Dissipative transport Carbon nanotube transistors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Javey, A et al.: Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 4(7), 1319 (2004)CrossRefGoogle Scholar
  2. 2.
    Appenzeller, J et al.: Tunneling versus thermionic emission in one-dimensional semiconductors. Phys. Rev. Lett. 92, 048301 (2004)CrossRefGoogle Scholar
  3. 3.
    Heinze, S et al.: Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002)CrossRefGoogle Scholar
  4. 4.
    Javey, A et al.: Ballistic carbon nanotube field-effect transistors. Lett. Nature 424(6949), 654 (2003)CrossRefGoogle Scholar
  5. 5.
    Pourfath, M et al.: Separated carrier injection control in carbon nanotube field-effect transistors. J. Appl. Phys. 97, 1061031 (2005)Google Scholar
  6. 6.
    Pourfath, M et al.: Improving the ambipolar behavior of Schottky barrier carbon nanotube field effect transistors. In: Proc. ESSDERC 429–432 (2004)Google Scholar
  7. 7.
    Martel, R et al.: Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 87, 256805 (2001)CrossRefGoogle Scholar
  8. 8.
    Guo, J et al.: A numerical study of scaling issues for Schottky barrier carbon nanotube transistors. IEEE Trans. Electron Devices 51(2), 172 (2004)CrossRefGoogle Scholar
  9. 9.
    Venugopal, R et al.: Simulating quantum transport in nanoscale transistors: real versus mode-space approaches. J. Appl. Phys. 92(7), 3730 (2002)CrossRefGoogle Scholar
  10. 10.
    Svizhenko, A., Anantram, M.: Effect of scattering and contacts on current and electrostatics in carbon nanotubes. Phys. Rev. B 72, 085430 (2005)CrossRefGoogle Scholar
  11. 11.
    Tian, W et al.: Conductance spectra of molecular wires. J. Chem. Phys 109(7), 2874 (1998)CrossRefGoogle Scholar
  12. 12.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press (1995)Google Scholar
  13. 13.
    Mahan, G.: Electron-optical phonon interaction in carbon nanotubes. Phys. Rev. B 68, 125409 (2003)CrossRefGoogle Scholar
  14. 14.
    Pourfath, M., Kosina, H.: Fast convergent Schrödinger-Poisson solver for the static and dynamic analysis of carbon nanotube field effect transistors. Lecture Notes in Computer Science 3743, 578 (2006)CrossRefGoogle Scholar
  15. 15.
    Guo, J., Lundstrom, M.: Role of phonon scattering in carbon nanotube field-effect transistors. Appl. Phys. Lett. 86, 193103 (2005)CrossRefGoogle Scholar
  16. 16.
    John, D et al.: Quantum capacitance in nanoscale device modeling. J. Appl. Phys. 96(9), 5180 (2004)CrossRefGoogle Scholar
  17. 17.
    Guo, J et al.: Performance analysis and design optimization of near ballistic carbon nanotube field-effect transistors. In: IEDM Tech. Dig. pp. 703–706 (2004)Google Scholar
  18. 18.
    Park, J et al.: Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4(3), 517 (2004)CrossRefGoogle Scholar
  19. 19.
    Koswatta, S. et al.: Ballisticity of nanotube FETs: role of phonon energy and gate bias. Cond-mat/0511723 (2005)Google Scholar

Copyright information

© 2006 2007

Authors and Affiliations

  • Mahdi Pourfath
    • 1
  • Hans Kosina
    • 1
  • Siegfried Selberherr
    • 1
  1. 1.Institute for Microelectronics, TU WienViennaAustria

Personalised recommendations