Journal of Computational Electronics

, Volume 6, Issue 1–3, pp 227–230 | Cite as

EnergyDispersion Relations for Holes in Silicon Quantum Wells and Quantum Wires

  • Vladimir Mitin
  • Nizami Vagidov
  • Mathieu Luisier
  • Gerhard Klimeck


We calculate the energy dispersion relations in Si quantum wells (QW), E(k 2D), and quantum wires (QWR), E(k 1D), focusing on the regions with negative effective mass (NEM) in the valence band. The existence of such NEM regions is a necessary condition for the current oscillations in ballistic quasineutral plasma in semiconductor structures. The frequency range of such oscillations can be extended to the terahertz region by scaling down the length of structures. Our analysis shows that silicon is a promising material for prospective NEM-based terahertz wave generators. We also found that comparing to Si QWRs, Si QWs are preferable structures for NEM-based generation in the terahertz range.


Energy dispersion relations Tight-binding model Negative effective mass Quantum well Quantum wire 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gribnikov, Z.S., et al.: Quantum real-space transfer in a heterostucture overgrown on the cleaved edge of a superlattice. J. Appl. Phys. 93(1), 330 (2003)CrossRefGoogle Scholar
  2. 2.
    Gribnikov, Z.S., et al.: Negative-effective-mass ballistic field-effect transistor: Theory and modeling. J. Appl. Phys. 87(10), 7466 (2000)CrossRefGoogle Scholar
  3. 3.
    Boykin, T.B., et al.: Valence band effective-mass expressions in the sp 3 d 5 s empirical tight-binding model applied to a Si and Ge parametrization. Phys. Rev. B 69(11), 115201 (2004)CrossRefGoogle Scholar
  4. 4.
    Rahman, A., et al.: Atomistic approach for nanoscale devices at the scaling limit and beyond – valley splitting in Si. Jpn. J. Appl. Phys. 44(4B), 2187 (2005)CrossRefGoogle Scholar
  5. 5.
    Gribnikov, Z.S., et al.: Terahertz ballistic current oscillations for carriers with negative effective mass. J. Appl. Phys. 80(10), 5799 (1996)CrossRefGoogle Scholar
  6. 6.
    Schmid, U., et al.: Relativistic band structure of Si, Ge, and GeSi: Inversion-asymmetry effects. Phys. Rev. B 41(9), 5919 (1990)CrossRefGoogle Scholar
  7. 7.
    The sp 3 d 5 s model includes spin and spin-orbital coupling explicitly. These simulations do not include any external magnetic field that would provide spin selection. The splitting of the states is purely due to symmetry breaking and the two split states are a mixture of up and down spinsGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  • Vladimir Mitin
    • 1
  • Nizami Vagidov
    • 1
  • Mathieu Luisier
    • 2
  • Gerhard Klimeck
    • 3
  1. 1.University at BuffaloBuffaloUSA
  2. 2.Integrated Systems LaboratoryETH ZurichZurichSwitzerland
  3. 3.Network for Computational NanotechnologyPurdue UniversityWest LafayetteUSA

Personalised recommendations