Journal of Computational Electronics

, Volume 6, Issue 1–3, pp 255–258 | Cite as

Quantized conductance without reservoirs: Method of the nonequilibrium statistical operator

  • Bart Sorée
  • Wim Magnus


We introduce a generalized non-equilibrium statistical operator (NSO) to study a current-carrying system. The NSO is used to derive a set of quantum kinetic equations based on quantum mechanical balance equations. The quantum kinetic equations are solved self-consistently together with Poisson’s equation to solve a general transport problem. We show that these kinetic equations can be used to rederive the Landauer formula for the conductance of a quantum point contact, without any reference to reservoirs at different chemical potentials. Instead, energy dissipation is taken into account explicitly through the electron-phonon interaction. We find that both elastic and inelastic scattering are necessary to obtain the Landauer conductance.


Quantized conductance Nonequilibrium statistical mechanics Transport theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics. Consultant Bureau N.Y. (1974)Google Scholar
  2. 2.
    Sorée, B., Magnus, W., Schoenmaker, W.: Energy and momentum balance equations: a novel approach to quantum transport in closed circuits. Phys. Rev. B 66, 035318 (2002)CrossRefGoogle Scholar
  3. 3.
    Sorée, B., Magnus, W., Schoenmaker, W.: Conductance quantization and dissipation. Phys. Lett. A 310, 322–328 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Das, M.P., Green, F.: Landauer formula without Landauer’s assumptions. J. Phys. Condens. Matt. 12, L687–693 (2003)CrossRefGoogle Scholar
  5. 5.
    Magnus, W., Schoenmaker, W.: On the use of a new integral theorem for the quantum mechanical treatment of electric circuits, J. Math. Phys. 39, 6715 (1998)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Landauer, R.: IBM J. Res. Develop. 1, 223 (1957) and Philos. Mag. 21 863 (1970)Google Scholar
  7. 7.
    Büttiker, M., Imry, Y., Landauer, R., Pinhas, S.: Phys. Rev. B 31, 6207 (1985)CrossRefGoogle Scholar
  8. 8.
    Kamenev, A. Kohn, W.: Landauer conductance without two chemical potentials. Phys. Rev. 63, 155304 (2001)CrossRefGoogle Scholar
  9. 9.
    Xing, D.Y., Liu, M.: Nonequilibrium statistical operator in hot-electron transport theory. Int. J. Mod. Phys. b(7), 1037–1057 (1992)Google Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  1. 1.IMECLeuvenBelgium
  2. 2.Universiteit AntwerpenAntwerpenBelgium

Personalised recommendations