Advertisement

Journal of Computational Electronics

, Volume 6, Issue 1–3, pp 105–108 | Cite as

Circuit modeling of flux qubits interacting with superconducting waveguides

  • G. Csaba
  • Z. Fahem
  • F. Peretti
  • P. Lugli
Article

Abstract

We present an equivalent circuit approach to understand, simulate and design experimental setups, where superconducting coplanar resonators are applied to probe quantum systems. We employ finite-element electromagnetic simulations to construct an equivalent lumped circuit representation of the microwave cavity and we use a circuit model based on the Bloch equations to simulate the behavior of a two-state model quantum system. Interconnection of the two circuit modules gives a semiclassical description of the coupled quantum/classical dynamics and yields predictions that are directly comparable with measurements on realized circuits.

Keywords

Circuit modeling Cavity QED Finite-element electromagnetics On-chip spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev A69, 062320 (2004)Google Scholar
  2. 2.
    Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 9 (2004)Google Scholar
  3. 3.
    Cendes, Z.J.: Vector finite elements for electromagnetic field computation. IEEE Trans. Magn. 27(5) (1991)Google Scholar
  4. 4.
  5. 5.
    Mariantoni, M., Storcz, M.J., Wilhelm, F.K., Oliver, W.D., Emmert, A., Marx, A., Gross, R., Christ, H., Solano, E.: Generation of Microwave Single Photons and Homodyne Tomography on a Chip. cond-mat/0509737Google Scholar
  6. 6.
  7. 7.
    Orlando, T., Delin, K.A.: Foundations of Applied Superconductivity Prentice Hall (1991)Google Scholar
  8. 8.
    Csurgay, Á., Porod, W.: Equivalent circuit representation of arrays composed of Coulomb-coupled nanoscale devices: modelling, simulation and realizability nt. J. Circ. Theor. Appl. 29(1), 3–35 (2001)CrossRefGoogle Scholar
  9. 9.
    Csaba, G., Csurgay, A., Porod, W.: Computing architecture composed of next-neighbor coupled, opticallt pumped nanodevices. Int. J. Circ. Theor. Appl. 29, 73 (2001)CrossRefGoogle Scholar
  10. 10.
    Orlando, T.P., Mooij, J.E., Tian, L., van der Wal, C.H., Levitov, L.S., Lloyd, S., Mazo, J.J.: Superconducting persistent-current qubit. Phys. Rev. B60, 22 (1999)Google Scholar
  11. 11.
    Csaba, G., Porod, W., Csurgay, Á.I.: Computing architecture composed of field-coupled single domain nanomagnets clocked by magnetic field. Int. J. Circ. Theor. Appl. 31, 1 (2003)CrossRefGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  1. 1.Institute for NanoelectronicsTechnical University of MunichMunichGermany

Personalised recommendations