Advertisement

Journal of Computational Electronics

, Volume 5, Issue 4, pp 439–442 | Cite as

Monte Carlo simulation of double gate MOSFET including multi sub-band description

  • J. Saint-Martin
  • A. Bournel
  • V. Aubry-Fortuna
  • F. Monsef
  • C. Chassat
  • P. Dollfus
Article

Abstract

A new two-dimensional self-consistent Monte-Carlo simulator including the multi sub-band transport in a 2D electron gas is described and applied to an ultra-thin Double Gate MOSFET. This approach takes into account both out of equilibrium transport and quantization effects. This method improves significantly microscopic insight into the operation of deep sub-100 nm CMOS devices. We analyze the ballistic, quantization and roughness effects in a 12 nm-long DGMOS transistor. In particular, we focus on the link between non-stationary transport and the evolution of sub-band occupancy along the channel.

Keywords

Monte Carlo simulation 2D electron gas Ballistic transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ITRS 2005 Edition, http://public.itrs.net/Google Scholar
  2. 2.
    Saint-Martin, J., et al.: Comparison of multiple-gate MOSFET architectures using Monte Carlo simulation. Solid-State Electron. 50(1), 94 (2006)CrossRefGoogle Scholar
  3. 3.
    Saint-Martin, J., et al.: On the ballistic transport in nanometer-scaled DG MOSFET. IEEE Trans. Electron Dev. 51(7), 1148 (2004)CrossRefGoogle Scholar
  4. 4.
    Saint-Martin, J., et al.: Multi sub-band Monte Carlo simulation of ultra-thin Double Gate MOSFET with 2D electron gas. Semicond. Sci. Technol. 21(4), L29 (2006)CrossRefGoogle Scholar
  5. 5.
    Venugopal, R., et al.: Simulating quantum transport in nanoscale MOSFETs: Real vs. mode space approaches. J. Appl. Phys. 92(7), 3730 (2002)Google Scholar
  6. 6.
    Fischetti, M.V., Laux, S.E.: Monte Carlo study of electron transport in silicon inversion layers. Phys. Rev. B 48(4), 2244 (1993)CrossRefGoogle Scholar
  7. 7.
    Monsef, F., et al.: Electron transport in Si/SiGe modulation-doped heterostructures using Monte Carlo simulation. J. Appl. Phys. 95(7), 35870 (2004)CrossRefGoogle Scholar
  8. 8.
    Dollfus, P.: Si/Si1−xGex heterostructures: Electron transport and field-effect transistor operation using Monte Carlo simulation. J. Appl. Phys. 82(8), 3911 (1997)CrossRefGoogle Scholar
  9. 9.
    Esseni, D., et al.: Physically based modeling of low field electron mobility in ultrathin single- and double gate SOI n-MOSFETs. IEEE Trans. Electron Dev. 50(12), 2445 (2003)CrossRefGoogle Scholar
  10. 10.
    Donetti, L., et al.: Influence of acoustic phonon confinement on electron mobility in ultrathin silicon insulator layers. Appl. Phys. Lett. 88(12), 122108 (2006)CrossRefGoogle Scholar
  11. 11.
    Goodnick, S.M., et al.: Surface roughness at the Si(100)-SiO$_2$ interface. Phys. Rev. B 32(12), 8171 (1985)CrossRefGoogle Scholar
  12. 12.
    Sakaki, H., et al.: Interface roughness scattering in GaAs/AlAs quantum wells. Appl. Phys. Lett. 51(23), 1934 (1987)CrossRefGoogle Scholar
  13. 13.
    Aubry-Fortuna, V., et al.: Electron effective mobility in strained Si/Si1−xGex MOS devices using Monte Carlo simulation. Solid-State Electron. 49(8), 1320 (2005)CrossRefGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  • J. Saint-Martin
    • 1
  • A. Bournel
    • 1
  • V. Aubry-Fortuna
    • 1
  • F. Monsef
    • 1
  • C. Chassat
    • 1
  • P. Dollfus
    • 1
  1. 1.Institut d’Electronique Fondamentale, UMR CNRS 8622, Bât. 220 Université Paris SudOrsayFrance

Personalised recommendations